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ABSTRACT

Primary objective of this study is to develop a method for prediction of failure of

thin beryllium sheets that undergo complex states of stress. Major components of the

research include experimental evaluation of strength parameters for cross-rolled beryllium

sheet, application of the Tsai-Wu failure criterion to plate bending problems, development

of a high order failure criterion, application of the new criterion to a variety of structures,

and incorporation of both failure criteria into a finite element code.

A Tsai-Wu failure model for SR-200 sheet material is developed from available

tensile data, experiments carried out by NASA on two circular plates, and compression

and off-axis experiments performed in this study. The failure surface obtained from the

resulting criterion forms an ellipsoid.

By supplementing experimental data used in the the two-dimensional criterion and

modifying previously suggested failure criteria, a multi-dimensional failure surface is

proposed for thin beryllium structures. The new criterion for orthotropic material is

represented by a failure surface in six-dimensional stress space. In order to determine

coefficients of the governing equation, a number of uniaxial, biaxial, and triaxial

experiments are required. Details of these experiments and a complementary ultrasonic

investigation are described in detail. Finally, validity of the criterion and newly determined

mechanical properties is established through experiments on structures composed of SR-

200 sheet material. These experiments include a plate-plug arrangement under a complex

state of stress and a series of plates with an out-of-plane central point load.

Both criteria have been incorporated into a general purpose finite element analysis

code. Numerical simulation incrementally applied loads to a structural component that is

being designed and checks each nodal point in the model for exceedance of a failure

criterion. If stresses at all locations do not exceed the failure criterion, the load is

increased and the process is repeated. Failure results for the plate-plug and clamped plate

tests are accurate to within 2%.
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1. INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

In the design of complex structures, material selection is usually based upon a

variety of physical characteristics, such as strength, and the interaction between materials

within the system. Beryllium possesses a unique combination of properties that makes it

desirable for a number of applications, especially in the aerospace industry. For example,

no other material matches beryilium's advantageous combination of high modulus and low

density. Due to this characteristic, beryllium is manufactured in a sheet form that is used

extensively to encase spacebound payloads and for structural purposes in the space shuttle

itself (see Fig. 1). Integral components of satellite structures that are manufactured from

beryllium sheets serve structural, reflective, and thermal functions (see Fig. 2).

FIG. 1. Structural Application of Beryllium

Substantial research efforts toward property identification and material

characterization of beryllium sheets were made in the late 1960s and early 1970s by

commercial firms and governmental agencies. Subsequently, beryllium components made

from beryllium sheet were successfully applied in a number of aerospace structural

applications. At the end of this period, the number of technical publications related to
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researchon useof berylliumasa structuralelementdiminishedconsiderably. In 1981,a
conicalberylliumsectionof theInsatC spacecraftfailedcatastrophicallyduringcertification

proceduresfor flight asa SpaceTransportationSystempayload. Failurewasattributedto

excessive out-of-plane stresses. This unexpected failure rekindled research interest and

concern for use of beryllium as a structural element (Henkener et al. 1991). If a beryllium

sheet component fails in a spacecraft structure, especially by out-of-plane loadings, the

results could be catastrophic since the brittle nature of the material usually causes the

formation of fragments that, subsequently, may invoke human injury and jeopardize the

structural integrity of the spacecraft. NASA, whose primary motivation is the safety of the

crew, is concerned about the behavior of the material under a variety of loadings and

especially under complex states of stress.

FIG. 2. Optical/Reflective Application of Beryllium

It became apparent that the theoretical and experimental work accomplished in the

1960s and 1970s provides inadequate information for establishing design guidelines. This is

due to two factors: the material properties of beryllium are not constant in the through-

thickness direction and the criteria that are most commonly used for predicting failure

consider only two-dimensional analyses. Moreover, these criteria neglect normal and shear

stress interactions.



NASA, the aerospace industry, and the beryllium manufacturing companies are

showing a renewed interest for development of a failure prediction method that can be used

in design of safe beryllium sheet structures. Most of the published research dedicated to

beryllium as a structural material approaches the subject from a microscopic point of view.

By contrast, the current effort considers the macroscopic nature of the material. Results

obtained are compared, whenever possible, with those obtained by other investigators who

use either a microscopic or a macroscopic approach.

The goal in what follows is to describe two numerical techniques for failure

prediction of beryllium sheets that have been verified by laboratory experiments. The first

technique uses laboratory tests to establish coefficients of the well-known Tsai-Wu failure

criterion. Applicability of this theory is measured through a series of tests on beryllium

plates deformed by a central point load. Second, a new failure prediction criterion is

presented that takes into account multi-dimensional states of stress. These stresses include

normal and shearing stress at failure. Various combinations of these stresses are used to

calculate the necessary interaction coefficients that define an equation of failure for cross-

rolled beryllium. After determining these coefficients, the new criteria is applied for

prediction of failure of several other experimental tests.

The remainder of this chapter outlines the physical, thermal, electromagnetic, and

mechanical properties of beryllium. Chapter 2 reviews existing criteria that are used to

predict failure. Chapter 3 presents a new, multi-dimensional failure criterion that

incorporates closure of the cubic polynomial strength tensor. The criterion calls for a

number of principal and interaction strength coefficients. Chapters 4 through 7 give an

account of the experimental investigations conducted for cross-rolled beryllium sheets.

More specifically, chapter 4 reviews experimental accomplishments of other investigators.

Some of the failure coefficients for the proposed criterion are based on results of these tests.

Chapter 5 describes uniaxial and shear tests used to compute the principal strength

coefficients, while chapter 6 includes experiments for determining the interaction

coefficients. The next chapter deals with non-destructive evaluations: hardness and

ultrasonic tests. The former provides a verification of the uniaxial tensile testing while the

latter provides an estimation of the variation of the elastic modulus in the through-thickness

direction. The coefficients obtained from experiments described in chapters 5 and 6 are

refined via constrained and asymptotic conditions derived from the criterion. The result is a

failure surface in six-dimensional stress space. Certain combinations of stresses and the

resulting failure surfaces are presented. Application of the failure criterion is provided in

chapter 8 for two distinct cases: a plate-plug arrangement subjected to a complex state of

stress and a clamped plate subjected to a point load.
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1.2 PHYSICAL PROPERTIES

Since material properties affect the behavior of beryllium sheets under load, a brief

survey of some of the natural and physical properties are presented and compared with

those of other structural metals. Properties discussed in what follows include: material

preparation, density, elastic moduli, thermal properties (such as specific heat, coefficient of

thermal expansion, and thermal conductivity), and X-ray transparency. The discussion is

restricted to cross-rolled beryllium sheet although some of the properties presented may be

applicable to other forms of beryllium.

1.2.1 Cross-Rolled Sheet Preparation

SR-200 cross-rolled sheet is manufactured from high purity SR grade powder.

Initially, the fabrication consists of hot pressing (simultaneous application of heat and

pressure) high purity beryllium powder contained in a suitable die into vacuum hot-pressed

block. Subsequently, the block is hot worked at temperatures ranging from 200 to 590 ° C

(400 to 1,100 ° F) by rolling at reductions of 3:l to 13:1. The SR-200 sheet is formed by

rolling at 90 ° angles (Brush Wellman 1986; Cooke et al. 1971).

In what follows, references to beryllium are equivalent to references of cross-rolled

beryllium sheet unless otherwise stated.

1.2.2 Atomic Structure

The microstructure of beryllium is hexagonal close-packed (HCP) (Asceland 1989).

Mechanical properties, as with most such lattice metals, are anisotropic. Two independent

bonding systems predominate in beryllium structures: a metallic bond that connects atoms

within a basal plane and a metallic-covalent bonding system that acts normal to the basal

plane. The two bonding mechanisms act independently from each other. An indication of

this is the fact that Poisson's ratios are close to zero for certain directions. The former of

the two bonding systems accounts for ductile behavior of the material when stress is applied

parallel to the basal plane while the latter system accounts for the brittle nature of beryllium

when stress is applied normal to the basal plane (Pollock 1977).

1.2.3 Density

The density of beryllium is 1.85 g/cm 3 (0.067 lb/in. 3) (Asceland 1989), which makes

it the least dense structural metal. An exception is magnesium that has a density of 1.76

g/cm 3 (0.064 Ib/in.3). A comparison of densities for a number of structural metals is

provided in the histogram of Fig. 3.
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FIG. 3. Density Histogram for Selected Metals

1.2.4 Elastic Moduli

A measure of stiffness is given by Young's modulus and elastic moduli for isotropic

and anisotropic material, respectively. Cross-rolled beryllium sheets possess orthotropic

material properties. The in-plane moduli of elasticity, E x and Ey, for SR-200 cross-roiled

beryllium sheets have magnitudes of approximately 297 GPa (43 × 103 ksi) and 303 GPa

(44 x 103 ksi), respectively. The out-of-plane elastic modulus E z and, thus, the out-of-

plane stiffness, is even higher at 345 GPa (50 x 103 ksi), which makes the material desirable

for applications where out-of-plane deformations need to be minimized (Marder 1986).

This is important since a high stiffness in the direction normal to the plane of the sheet

coupled with low Poisson's ratios implies relatively small out-of-plane deformation and,

thus, high dimensional stability. Specific stiffness or the modulus-to-density ratio provides

another measure of the commendable properties of beryllium (Fenn et al. 1967). For simple

geometric configurations, the deflection of a structure is inversely proportional to the

specific modulus of a load free structure deflecting under its own weight. For specialized

engineering applications, such as optical supports, it is necessary to minimize distortions.

This is obtained by using a high specific modulus material, such as beryllium, in order to

increase dimensional stability of the overall structure.
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Fig. 4 compares in-plane Young's moduli for selected structural materials.

Beryllium'sin-planestiffnessis one and one-half times greater than that of steel and several

times higher than that of other, so-called, lightweight materials, such as aluminum, titanium,

and graphite/epoxy composites.
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FIG. 4. Histogram of Young's Modulus for Various Metals

1.3 THERMAL PROPERTIES

1.3.1 Specific Heat

Beryllium has an average specific heat of 18.3 kJ/(kg K) (0.46 BTU/lb-°F), the

highest among common structural materials (Brush Wellman 1986). The highest specific

heat value occurs at its melting point of 1,285°C (2,345°F) (Marder 1986). This is very

important due to the fact that the low density and high heat capacity combine to make

beryllium a lightweight, high efficiency, heat pool. At the same time, the high melting point

of beryllium allows the structure to withstand melting. Striking applications of these

characteristics of beryllium are found in high performance aircraft and the space shuttle

brake system.

1.3.2 Coefficient of Thermal Expansion

A wider view of the thermal properties of beryllium may be obtained by examining

the coefficient of thermal expansion. The value at room temperature is 11.5 x 10-6/°C (6.4

x 10-6/°F), the lowest for any structural metal (Marder 1986). Thus, beryllium has a
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combination of high specific heat, which makes it difficult to raise the temperature, and a

low coefficient of expansion, so that even when the temperature is elevated, less elongation

takes place than for other metals. This combination gives dimensional stability to

structures, especially in applications where energy may be absorbed or radiated, as in

satellite structural members that go in and out of solar shadows during orbit. As an

example, the stiffeners of the solar array on RCA Spacenet satellites were constructed of

brazed beryllium. Primary considerations in the design were light weight, accuracy of

pointing, and dimensional stability during changes in solar shadowing (Marder 1986).

It should be mentioned that the coefficient of thermal expansion varies with

beryllium oxide (BeO) content and, consequently, from grade-to-grade of beryllium.

However, increasing BeO content reduces the coefficient of thermal expansion and,

therefore, increases stability.

1.3.3 Thermal Conductivity

The thermal conductivity of beryllium, 165 W/(m K) (104 BTU/Ib-ft2-°F), is

relatively high compared to that of steel, 43 W/(m K) (27 BTU/Ib-f't2-°F), and is somewhat

less than that of aluminum, 203 W/(m K) (128 BTU/Ib-ft2-°F) (Marder 1986). This

property allows heat to be conducted readily and, thus, temperature differences between

various locations in a structure are ameliorated. Again, as heat is conducted away from

higher temperature regions, thermal gradients are reduced, and dimensional stability of the

structure is improved.

1.4 TRANSPARENCY TO ELECTROMAGNETIC RADIATION

Not only does beryllium conduct heat well, but it also does not hinder passage of

electromagnetic radiation. For example, beryllium is used in x-ray tubes as a window

through which x-rays readily pass. A mechanical vacuum seal is maintained between the x-

ray tube and the environment. In general, beryllium absorbs very little x-ray, gamma,

electron, or other electromagnetic radiation. The transmitted x-ray intensity, I, is described

by the equation

-m

--ZP

I=Io ea ....................................................................................................................... (1)

where, Io is the intensity of the incoming beam in percent, -m/p is the mass absorption

coefficient (cm2/g), ,o is the density (g/cm3), 2" is the thickness of the material (cm).

The quantity m/p is known as the mass absorption coefficient that not only depends

on the absorbing material, but also upon the x-ray wavelength. The advantage of using



berylliumis that 95% of the original intensityis transmitted,ascomparedto 3.3 x 10-8%
and4.4 x 10-8%for aluminumandtitanium,respectively.

Beryllium is also an excellentreflector of infra-red (I.R.) radiation. It is 96%

reflective at 10.6m, and can be an effectiveoptical componentin I.R. systems(Grant

1983). Often, advantageousphysicalpropertiesare useful only when accompaniedby

sufficientmechanicalstrength;i.e., berylliumwould not beusedasan x-ray window if it

were not strongenoughto withstandthe stressimposedby havinga vacuumon one side
andair pressureon theother.

To summarize,Table1 listssomeof theimportantphysicalpropertiesof beryllium.

TABLE 1.

Property
(1)

Atomic number

Atomic weight

Specific gravity

Melting point

Specific heat

Thermal conductivity

Coefficient of thermal expansion

Reflectivity

Optical

Ultraviolet

Infrared

Sonic velocity

1.5 MECHANICAL PROPERTIES

Physical Properties of Beryllium

Value

(2)
4

9.02

1.85 g/cm 3

1,285 °C

1.83 J/OK

165 W/(m K)

11.5 x 10-6/°C

50%

55%

98%

12.6 x 103 m/s

Mechanical properties of beryllium vary considerably from grade-to-grade (Grant

1983). References to beryllium in the following chapters only consider properties of SR-

200 cross-rolled beryllium sheet due to its widespread use in space applications. Table 2

summarizes elastic properties for SR-200 sheet that has a thickness of 1.96-mm (0.077-in.).

Testing used to obtain most of these parameters was conducted by Lockheed Missiles and

Space Company (Fenn et al. 1967). A number of these values have been recently verified

for 2.54-mm (0.10-in.) thick cross-rolled beryllium sheet as reported in later chapters of this

report and elsewhere (Roschke and Papados 1989; Henkener et al. 1991). Identical in-

plane uniaxial mechanical properties for the 1.96-mm (0.077-in.) and the 2.54-mm (0.10-in.)



thick SR-200sheetareobserved.Table3 listsyieldandultimatefailurestrengths(Fennet
al. 1967).

TABLE 2. Elastic Properties of 1.96-mm (0.08-in.) SR-200 Sheet (Fenn et al.

1967)

Direction of Loading Elastic Modulus Poisson's Ratio

(i)

Longitudinal

Long transverse

Short transverse

(Through-thickness)

(GPa)
(2)

298.7

293.6

347.5

(3)

v_2 = 0.0768
v13 = 0.0137

v21 = 0.0752
v23 = 0.0190

vax = 0.0162
v32 = 0.0230

TABLE 3. Uniaxial Strength Properties of 1.96-mm (0.08-in.) SR-200 Sheet

(Fenn et al. 1967)

Direction of Loading

(1)

Longitudinal
Tension

Compression

Long transverse
Tension

Compression

Short transverse
Tension

Yield Stress

(MPa)
(2)

383.4
379.2

386.1
382.7

Ultimate Stress

(MPa)
(3)

537.6
659.1

564.0
591.5

200.0

1.6 DISADVANTAGES IN USING BERYLLIUM

Despite numerous advantages that beryllium provides as a structural material, a

number of disadvantages need to be kept in mind. One of the primary drawbacks of

beryllium sheet material is that it exhibits brittle behavior when loaded to failure under

complex states of stress. For example, in regions of stress concentration beryllium fractures

with little or no evidence of plastic deformation, i.e., the material is not capable of

redistributing localized stresses by gross deformation before cracking occurs. In addition,
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berylliumlacks toughnesswhenexposedto high strain ratesdue to its inability to absorb

energybyplasticdeformationprior to fracture(Kojola 1967).

Anotherdisadvantagein usingberylliumis the fact that it cannot be mechanically

machinedwithout specialprecautions.This is dueto toxicity of the metal;i.e., it hasbeen

shownby experimentson laboratoryanimalsthat inhalingberylliumdustcancausechronic

diseases.In addition,machiningcancausemicroscopicsurfaceflaws that radicallyaffect

the strengthof the material(Henkeneret al. 1991). Dependingon the stressstate,the

reductionin strengthcanbedramaticin the sensethat the ultimatestrengthbecomesequal

to theyieldstrength.

Finally, the costof berylliumcross-rolledsheetsis considerablyhigher than that of

other structuralmetals. Importanteconomicfactorsin the manufacturingprocessinclude

mining, purification of beryllium powder, forming hot pressblocks, cross-rolling into

berylliumsheets,andcostly chemicaletchingand cutting into desiredgeometricalshapes.

Nevertheless,useof berylliumsheetmaterialis oftencompetitivein spaceapplicationswhen
all economicfactorsaretakenintoaccount.



2. HISTORICAL BACKGROUND

2.1 OBJECTIVES

Contemporary applications of failure criteria frequently incorporate two-dimensional

or simplified three-dimensional methodology for prediction of failure stresses and/or strains.

Motivation behind the development of a new multi-dimensional failure criterion is due

mainly to the lack of a sufficiently accurate mathematical tool that accounts for the behavior

of brittle material with anisotropic properties. Such a criterion should be able to provide a

reliable maximum load estimate so that design of the structure is not penalized in terms of

excessive weight requirements. The failure criterion developed in the following chapters is

represented by a fracture surface in a six-dimensional stress space.

The term "brittleness" is taken here to refer to material failure which is preceded

with either negligible or, preferably, no inelastic deformation. Moreover, development of at

least one separation surface within the body is required. By definition, first-order criteria

involve only first-order terms, quadratic criteria consider combinations of first and second-

order terms, and higher-order criteria include cubic-order terms. Incorporation of cubic

terms usually yields a non-convex, non-closed, mathematically complex surface.

2.2 ATTRIBUTES OF A FAILURE CRITERION

In general, criteria for failure prediction of a brittle anisotropic material are required

to satisfy the following (Roschke and Papados 1989; Gol'denblat and Kopnov 1965; Hill

1950):

(a) Stability conditions and a smooth, continuous, convex, non-singular surface are

required to satisfy uniqueness.

(b) The criterion should be invariant with respect to coordinate axis transformations.

(c) The failure surface resulting from the criterion should be a potential function, a

function that is independent of the loading path.

(d) Strength interaction coefficients should be used that depend on mechanical

properties of the material at different ultimate strengths.

(e) Applicability of the criterion for multiaxial and complex states of stress is

necessary.

(f) Only a finite number of tests can be required to evaluate strength coefficients.

(g) Each complex state of stress should be described by a combination of strength

parameters, not only by one component of the strength tensor.
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A large numberof theorieshavebeenproposedthat dealwith failure prediction.
None fully satisfiestheseconditions. Severalof the most importantand influentialfailure
theoriesarepresentedin thefollowing sections.

It is consideredexpedient,at this point, to differentiatebetweenfailure and yield.

Early criteria, suchasthat of Rankineand Coulomb(Karr and Das 1983)predictedthe

stresslevels at which yielding begins. At that time most structureswere designedto

performup to theonsetof yield. In thiscase,anystressoutsidethe loci of pointsdefining

the yield surfacewas consideredfailure. More recent investigators define a two-

dimensional isotropic yield surface and via a flow rule, subsequently, attempt to reach the

ultimate strength limit surface (yon Mises 1913) which they define as the failure surface.

Due to the confusion introduced by conflicting use of the terms yield and failure, failure is

defined here as the inability of a structure to perform at its intended design whether that is

its yield or ultimate failure limit state Hill (1951) proposed an orthotropic yield criterion in

conjunction with a set of flow rules to define the in-plane ultimate failure surface. This was

an effort to predict ultimate failure of ductile material. These approaches, although

adequate for ductile material, fail to describe failure surfaces for non-isotropic brittle

material since no flow rule can be associated with a material that does not exhibit inelastic

or plastic deformation. Gol'denblat and Kopnov (1965) first introduced the idea of a

strength failure criterion based directly on ultimate stress. Their work forms the basis of

most modern failure criteria for brittle material.

A brief account of the major yield and ultimate failure criteria is provided in

chronological order in the following sections.

2.3 ISOTROPIC YIELDING

For isotropic material the phenomenon of yielding is independent of the orientation

of the material with respect to the applied stresses. In this case any criterion may be

expressed in the form,

f y(Jt,J2,J3)=O ......................................................................................... (2)

where "/1, J2, and ,]3 are the invariants of the stress tensor tsij (Karr and Das 1983). The

invariants are defined in terms of principal components of stress or, 02, and 03 as follows:

J, =or, +cr +or3 ........................................................................................ (3)

J_ = -(o',ff: +cr, crj +cr_CT_) .......................................................................... (4)

j, -- .............................................................................................. (5)
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2.4 TRESCA'S CRITERION

Tresca proposed the first yield criterion in 1864 (Hill 1948). Influenced by the

general failure theory proposed for soils by Coulomb, Tresca suggested that yielding occurs

when the maximum shear stress reaches a certain threshold. This criterion can be expressed

in the form:

0., -0.s =C ............................................................................................... (6)

where 0"1 _> 0"2 > 0"3 are principal components of stress and C is a constant. This

corresponds to a hexagonal yield locus on the octahedral plane. Tresca's attempts to

analyze the distribution of stress in the plastic region are far from accurate and often crude

(Karr and Das 1983).

2.5 VON MISES' CRITERION

It is commonly accepted that the yield strength of metals is unaffected by application

of hydrostatic pressure that is applied either alone or in combination with the stress

situations, von Mises (1913) used this concept to simplify the yield function. Using the
t

deviatoric stress tensor, 0"ij, instead of o-0-, the yield surface function, fy, becomes:

fy(J'2,J'_)=O .......................................................................................... (7)

where,

10"
,j ....................................................... (8)

10"
J'3 =0", 0'2 0", =-_( ,j0":_,0"k,) ...................................................................... (9)

The deviatoric components are given by:

0"_--0.v-0.4j ......................................................................................... (10)

where

0.=0.,,/3 =J,/ 3 ..................................................................................... (11)

for i, j, k = 1, 2, 3 and customary indicial notation (Sokolnikoff 1964). Moreover,

exploiting the assumption that ideal isotropic/plastic bodies do not exhibit the Bauschinger

phenomenon, i.e., the magnitude of yield stress is the same in tension and compression, and

since f3 changes sign with stress reversals, it follows that fy must be an even function of

this invariant.

In 1913 yon Mises also presented a criterion, known as the J2-theory, that suggests

that yielding occurs when f2 reaches a critical value (Karr and Das 1983). This approach
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completelyneglectsthe influence of the f3 invariant. The criterion produces a circular yield

locus on the octahedral plane. Its governing equations are:

2j,z = 0., do = cr, _ +or,2_ +0.,j: = 2x2 .............................................................. (12)

or

(o'1 -d2) 2 +(o" 2 -o,) 2 +(d, _o')2 =6_ ...................................................... (13)

or

(<-d,,) -e,)" +(e, _<)2 +6( +< + ............................... (14)

where _ is a constant parameter that depends on the pre-strain state of the material. The

octahedral shear stress at yield is assumed to have a value of:

__42 ,_ (i--1,2,3) ..................................................................... (15)
3

By letting 0.1° = -0"2 ° and 0"3° = 0, tc can be correlated to the maximum shear at yield. The

uniaxial tensile yield stress, Y, is obtained by substitution of 0"1° = Y and 0"2° = 0 into Eq.

14 This yields:

Y ---4'ff i¢ ................................................................................................ (16)

Hencky provides a physical interpretation of this criterion (Hill 1950). Eqs. 12-14

imply that yielding is initiated only when the elastic distortional energy acquires a critical

value. On the other hand, Huber suggests that there are two distinct cases depending upon

whether hydrostatic pressure is in tension or compression (Hill 1950). In the former case,

yielding is a function of the total distortional energy while in the latter case yielding

becomes a function of the elastic distortional energy. Nevertheless, von Mises' criterion

provides a reasonably good correlation between experimental and theoretical results for a

number of ductile metals such as copper, aluminum, iron, and mild to medium carbon steels

(Hill 1950).

2.6 HILL'S CRITERION

,,,on Mises' criterion is generalized by Hill in one of the first attempts to account for

tensile and compressive strength variations (Hill 1950). For orthotropic polycrystalline

metals Hill proposes the following quadratic equation for yield prediction:

F(o'x -0"y)2 +G(0"x -0.,)2 + H(0., -0.,)2 + 2L0.2,o, + 2Mcr2y, + 2N0.2_ =1 ................. (17)

where F, G, H, L, M, and N are material constants. The criterion reduces to yon Mises'

theory provided that any anisotropy is insignificant. Coefficients F, G, H, L, M, and N are
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parametersthat arecharacteristicof the material anisotropy. In view of assumed symmetry

conditions, only quadratic shear terms are included. In addition, the Bauschinger effect is

not taken into account since linear terms are excluded from the criterion. Assuming that

hydrostatic pressure, or its superposition, does not influence failure, Hill only uses the

difference of the normal components of stress.

Letting X, Y, and Z be the principal tensile yield stresses that correspond to the three

mutually perpendicular principal axes of anisotropy, and R, S, and T be the yield shearing

stresses with respect to the same three axes, it can be shown that the coefficients F, G, H,

L, M, and N should satisfy the following set of equations (Hill 1950):

1 1 1 1

X-----7 =G + H, 2 F = y----_--,, Z2 X2

1 1 1 1

y--7-=H+F, 2G =--_+ X2 y2 ......................................................... (18)

1 1 1 1

Z---T =F +G, 2H = X---7 + y2 Z 2

1 1 1
2L=-- 2M=-- 2N=--

R 2 , S 2 , T 2

In the event that rotational symmetry is observed about the z-axis, viz. the material is in-

plane isotropic and generally quasi-orthotropic, then Eq. 18 becomes:

[(G + H)cr_ -2Ho'xcr , +(F + H)cr2y + 2 N r2_r] -2(Go'x + Fo'y)o', (19)

+2(L r2_ +M re_,)+2(F +Gig =1 ............................

The necessary and sufficient conditions for the material to be rotationally symmetric with

respect to the out-of-plane axis of rotation are:

N ---G +2H --F +2H ............................................................................... (20)

L=M

In the case of global symmetry and complete isotropy, the coefficients are related as

follows:

L = M = N ---3F ---3G = 3H ........................................................................ (21)

and Eq. 19 is equivalent to the von Mises' criterion when F is equal to 1 / y2.

It is apparent that for the implementation of Hill's criterion the values of the yield

stresses X, Y, Z, R, S, and T are required. In other words, six independent experiments are

necessary for determining the constant coefficients.

For orthotropic material, such as cross-rolled beryllium sheets, Hill's criterion can be

further specialized. Considering only in-plane stresses Eq. 19 becomes:
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(G+H)cr_-2HcrxCry +(F+H)cFy +2N _y=I ................................................ (22)

In the event that the material is cut at an angle a, with respect to the principal rolling

direction (Fig. 5), the transformed stress components for a tensile specimen are

crx = crcos2 ( a)

cry =crsin2(ct) ................... ............................................................. (23)

where c_ is the tensile yield stress In this case Eq. 19 becomes:

1 (24)

_/[Fsin_(a) +G cos2(a) + H +(2N-F-G-4H)sin2(ct)cos2(a)]

From Eq. 24 it can be shown that maxima and minima of _r can occur along the orthotropic

axes as well as in directions a_f._, that are given by

tan2(auA x ) _- N -G -2H ........................................................................ (25)
N -F -2H

cL

Y-Axis

/
X-Ax_s

Secondary Ro fling
DirecLion

Principal Rollixlg
Direction

FIG. 5. Rotation of Material Axes with Respect to Center-Line of the

Specimen

The yield stress, a, acquires maximum values in the x and y directions ifN > F + 2

H and N > F + 2H and minima in the CrMAX directions. If N < F + 2H and N < F + 2H

then er attains maxima in the a_4 x directions and minima along the x and y axes.

Hill's criterion is the first serious attempt to predict yield surfaces for non-isotropic

materials. It is very effective in predicting the behavior of ductile material, both isotropic

and orthotropic, although the original intention was to describe yielding of anisotropic
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material. Becauseof the oversimplified assumptionsand the omission of certain

phenomena,suchasthe Bauschingereffect, the criterion becomes unreliable for prediction

of yielding and, subsequently, failure &brittle material.

2.7 GOL'OENBLAT AND KOPNOV'S CRITERION

A generalized tensorial form of available failure criteria is given by Eq. 26

(Gol'denblat and Kopnov 1965):

f (0._) = (F, 0., )= ./. (F,j 0., 0.j )P ./_(F,jk 0.,0._0._ )' _/....= 1 ........................................... (26)

where, 0.1 = crll, °'2 = 0"22, °'3 = 0"33, °'4 =0.13, 0"5 = °'23, o'6 = o'2, and i,j, k = 1, ..., 6;

Fi, F0., and Fij k are contracted equivalents of the second-, fourth-, and sixth-order strength

tensors, respectively; and ct, 13, and 7 represent real numbers.

This is the first failure criterion proposed as opposed to yield criteria presented in

the earlier sections. It forms the basis for criteria that are subsequently developed.

Goi'denblat and Kopnov's failure criterion was applied to prediction of failure for

glass-reinforced plastics. The original generalized criterion of Eq. 26 is simplified for

application to these plastics to include only linear and quadratic terms of the stress tensor

components, and is applied to in-plane stress situations. For a = 1 and fl= 0.5 it becomes

f(0.k)=F,0", +(_0",0.j)o.s =1 ......................................................................(27)

The power term of Eq. 27 leads to complicated mathematics that do not contribute

to the generality of the criterion (Tsai and Wu 1971).

2.8 HOFFMAN'S CRITERION

An orthotropic fracture criterion that uses six stress components, and follows the

pattern of yield conditions proposed by yon Mises and Hill is proposed by Hoffman (1967).

The criterion, which includes terms that are odd functions of the material strengths, is

described by the following equation:

c,(0.. -0".)' +c,(o. +c,0",,+c,0".
(28)

+cge=

where C 1 through C 9 are independent coefficients that are determined from nine

independent, uniaxial and pure shear experiments.

Letting Ftx, Fry, Ftz, and Fcx, Fcy, Fez be the three orthonormal, uniaxial, tensile

and compressive strengths, respectively, and Fsy z, Fszx, Fsxy the pure shear strengths, then

the coefficients of Eq. 28 are given by
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c, --(F_y-(F=)-'

c,
c, --(F_y-(&y

c, '
q --(_)"

c,

......................................................... (29)

If it is assumed that ultimate strength and fracture are one and the same for brittle

material, i.e., the terms "fracture" and "failure" are equivalent, for the case of plane stress,

i.e. trz = ryz = rxz = 0 and Eq. 28 becomes

o-x .,, try +._._ = I ..................................... (30)

In three-dimensional stress space (trx, tyy, and rxy) Eq. 30 is represented by an ellipsoidal

surface that is symmetric about the Xoy plane and has its center at

Xc= +
2 4

Y_ (F,,,-F=)(F,_-F=)(F_Fq) (31)
÷ .t°e°l°*l°p°_oo°*°,°o,°l°o°°o,*oi°o°oo°°,°oJ°o°*,°o,°*.oe°°.°°*°

2 4F_,F,_

Z_ =O

Incorporation of linear terms in Hoffman's criterion provides a first formulation for

failure prediction of brittle anisotropic material that takes into account differing tensile and

compressive strengths. Moreover, first-order tension and compression terms partly account

for the Bauschinger phenomenon. Hoffman's criterion contains symmetry and is consistent

with other well-established isotropic and anisotropic failure conditions. It provides a

smooth and adoptable formula for interpolating between basic strength data. However,

only normal interaction coefficients, such as 2C 1 which relates trx and try, are used.

Interaction coefficients relating normal and shear strength are omitted. Thus, the limited
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interaction terms included in this criterion do not provide the generality required for reliable

failure prediction of brittle material.

2.9 TSAI-WU CRITERION

A more general approach is presented by Tsai and Wu (1971, 1974), who propose

the following tensor formulation for the failure surface:

f(crk) =_cr , -¢-_cr, crj =1 .......................................................................... (32)

The difference befween positive and negative stress-induced failures is described by the

linear terms. Quadratic terms of the criterion describe an ellipsoid in the stress space. The

investigators claim that if higher-order terms, such as sixth-order strength tensors, were to

be included not only does the mathematics become complicated but also the resultant failure

surface can be open ended and thereby predict infinite strengths. Therefore, cubic terms are

omitted from this criterion. The main assumptions incorporated in the Tsai-Wu criterion

are as follows:

(a) The criterion is itself a scalar equation and, thus, automatically invariant. Contrary

to Tresca's, yon Mises', and Hill's criteria that require interactions among stress components

to be fixed and dependent on material properties, the Tsai-Wu criterion considers these

interactions to be independent of material properties.

(b) All stress components are expressed in tensorial notation and, therefore, their

transformations and associated invariants are well established. The criterion is invariant for

all coordinate systems (i.e. Cartesian, spherical, and cylindrical).

(c) The criterion exploits symmetry properties of the strength tensor. General

anisotropy and three dimensional space present no mathematical difficulty.

(d) Off-axes transformation properties are well established. Therefore, behavior of

material under application of off-axes stresses can be obtained with relative ease.

(e) Stability conditions are incorporated in such a way as to ensure that the shape of the

failure surface is ellipsoidal and, at the same time, the surface is precluded from being open-

ended under conditions of hydrostatic pressure. Thus, a positive definite requirement is

imposed on both the contracted second- and fourth-order strength tensors, F i and Fij ,

respectively. Conditions of constraint are as follows:

......................................................................................... (33)

F, Fj -FJ __0 fori, j=l,2,3and k =4,5,6 ..................................................... (34)

For a truly anisotropic material, the Tsai-Wu criterion requires determination of

twenty-seven independent coefficients: six for the F i tensor and twenty-one for the Fq.



20

tensor. For orthotropic material, symmetry reduces the number of coefficients to twelve:

three for F i and nine for FO.. These coefficients are shown in matrix form in Appendix I.

The principal strength tensor coefficients (F i and F,) can be readily calculated from

experimentally determined values of the uniaxial tensile and compressive failure strengths

(X, Y, Z, X', Y', and Z') in the three orthonormal coordinate axes. These axes are chosen to

coincide with the axes of orthotropy. Also, results of tests for the three (positive or

negative) shear failure stresses (S, R, T), provided that the absolute value of shear strengths

is identical, are necessary. If the latter assumption is not valid then six shear strength values

are required (S, R, T, S" R', and T').

tensorial coefficients.

Eq. 35 shows the relations among strength and

1 1 1 1 1 1

6 X X" _ Y Y" 6 Z Z"

6=0
1 1 1

1 1 !

............................................... (35)

The interaction strength coefficients, 1=12, FI3 , and F23 , can be derived from a

variety of biaxial, or combined biaxial and shear experiments. For example, the following

stress combinations can be used to estimate interaction coefficient 1=12 (Tsai and Wu 1971;

Wu and Scheublein 1974):

For crz =or 2 = P

For crl = -cr2 = Q

For trj = -tr 2 = -Q"

For 0"1 = cr_=o'_ =0.5U

For cr1 = tr 2 =o"6 = --0.5U "

F_2 =[I-P(F_ +F2)-P'(F . +F2,)]
2p _

F_,- [1-Q(F_-F,)-Q'(F H -/-F,,)]

2Q'

F_, = [1 +Q(F_ -1=2)-Q'_(F. +F,2)] .................. (36)

2Q

F_, =[4-2U(F_ +F2)-U'(F . +F2, +F_,)]
2U _

=[4 -/-2U '(F_ +F,)-U "(F_, -/-F22-c-F,,)]
F,,

2U ,2

where P, Q, and -Q' are normal biaxial strengths, and U, and -U' are normal-shear biaxial

strengths. Similar equations can be obtained for normal interaction coefficients related to

the (1-3) and (2-3) planes.
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Specialcaremust be takenwhendetermininginteractioncoefficients. It hasbeen

shownthat sensitivityof principalcoefficientsis not affectedby experimentalscatter,i.e.,

themagnitudeof theratio of positiveto negativestrengthmeasurementsdoesnot affectthe

magnitudeof the tensorcoefficient(Wu andScheublein1974). However,this is not valid

for thecaseof scatterin the experimentalresultsfor estimatinginteractioncoefficientsF/j

for i ;ej. An optimal ratio of crl/o" 2 is required for this estimation. This ratio depends

primarily on the sign of the interaction coefficient, the magnitude of the biaxial strength, and

the magnitude of the interaction coefficient itself (Wu and Scheublein 1974, Wu 1974).

The main advantage of the Tsai-Wu criterion compared to earlier failure theories is

that it accounts for multi-dimensional stress space as well as different material symmetries.

Only first and second-order contracted strength tensors are incorporated in order to achieve

mathematical simplicity and to maintain a determinate number of linear equations that

provide strength coefficients. After taking symmetry conditions of the strength tensors into

consideration, twenty-seven coefficients describe the behavior of anisotropic materials.

This approach avoids incorporation of higher-order tensors that lead to mathematical

complexity in evaluating strength interaction coefficients, and indeterminacy of the linear

system of equations that arises from such an inclusion.

Although widely used, the Tsai-Wu envelope, which yields an ellipsoid, does not

give accurate correlations with experimental data for tension-tension and compression-

compression quadrants of the failure surface (Priddy 1974; Jiang and Tennyson 1989).

Furthermore, a shortcoming of this criterion is the fact that tension-tension and

compression-compression interactions may not be treated independently (Jiang and

Tennyson 1989). Application of this criterion to cross-rolled beryllium sheet has been

established for failure prediction of in-plane stresses (Mascorro et al. 1991).

2.10 PRIDDY'S CRITERION

In an attempt to obtain more generality, Priddy (1974) includes products of stress

components of order greater than two in a failure criterion. For a generalized, accurate, and

complete criterion, products of stresses of order greater than two are considered in a failure

prediction equation for brittle, orthotropic material. These terms induce noncircular

octahedral shear envelopes that tend to agree with experimental findings. The general

expression describing the criterion is given by the equation:

f(crk) =For ' +F, or,% +Fo, cr, cr crk =1 .......................................................... (37)

Due to complexity of the contracted sixth-order tensor only a limited number of

mathematically independent cubic terms are used. An allotropic representation of Eq. 38

leads to the following special form:

W =l+I +I'xlI +fxIII .......................................................................... (38)
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where,

W={er}_[A]{cr}=ZZ-(%er,%) for i,j=l,2,a,,d3

for i,j=l,2,ana3 ................................... (39)

I={e}r{_}=_e,o -, for i,j=l,2,and3

//= second stress invariant; III = third stress invariant; {er} = vector form of stress tensor;

W has the form of strain energy density; [A] is a matrix similar to the elastic compliance of

the material; and di, ei, and fare undetermined scalar coefficients.

For the special case of orthotropic material that has the principal coordinate axes of

the material coinciding with the orthotropic axes, Eq. 38 becomes:

a,q, +a2g, +a,#, +6,4 +624 +b,4 +c,_,cr 2 +cacr, o-, +c, cr,cr,

=l+d,o-, +d:, +d,o-, +(e,o', +e,o, +e,o,)(otcr 2 +o,o', +cr, o,-g2-_,-g,) ... (40)

in which

1

1

b_ = (F F,,) ............................................................................................. (41)

are strength coefficients obtained from uniaxial strength tests, and F,, and F_ are the tensile

and compressive strengths, respectively, of the material. Frj(i #j) are shear strength

parameters.

In order to reduce the number &coefficients required to describe the failure surface,

approximations for both biaxial compression and tension as well as traiaxial strengths are

used. For example, the triaxial tensile strength is considered to be linearly related to the

biaxial strength. These coefficients are represented in Eq. 40 by q, e,, andf Furthermore,

the following stability condition is introduced such that the failure surface is forced to be

open for the case of hydrostatic pressure:

f -- -3 £(e,) ........................................................................................... (42)

It should be noted that Eq. 40 leads to a system of inconsistent equations when

shear stresses are considered Correctly, the criterion considers positive and negative shear

strengths acting on any given plane to be identical; this yields expressions for the o-i
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coefficients. However, in the event that the following states of stress are imposed on a

structure Eq. 40 becomes:

State of stress: r12, r2j, rl_

a_ 2 +a2f12_ +a_ 3 =1 + 2 fr_2r23r,_ ............................................................. (43)

State of stress: -r_2, r23, r/j

a,_2 +42_ 3 +a3_ _ =1_2frj2r23r, 3 .............................................................. (44)

State of stress: - r_2, - r2j, r_j

a,_2 +42f12_ +43_ J =1+2fr_2r23r_ .............................................................. (45)

State of stress: - r_2, - r23, - r_j

a,_2 +a2fl2j +a_ 3 = l_2 fr_2r2_r, _ .............................................................. (46)

Sets of Eqs. 44 to 46 are inconsistent unless the value of the coefficient f is set to zero.

Moreover, if f is set to zero then the stability condition introduced by Eq. 42 must always

be equal to zero. This yields a secondary condition that states:

Zl(e,) =0 ................................................................................................ (47)

2.11 JIANG AND TENNYSON'S CRITERION

Other higher-order criteria include those of Tennyson and Elliott (1983), and Jiang

and Tennyson (1989). The former contribution is similar to that of Priddy in the sense that

independent biaxiai tests are required for calculation of interaction coeffcients. Although

the latter model only considers specially orthotropic material, such as composites under in-

plane loading, it serves as a fundamental reference for the new, proposed criterion. A

general overview of this criterion is found in Appendix II

Jiang and Tennyson formulate a criterion for failure prediction of orthotropic

material, such as composites. They successfully employ closure of the sixth-order strength

tensor. This criterion, however, is limited to in-plane stress failure situations. Through-

thickness effects are completely neglected. Although it is effective in predicting failure for

material that exhibits extensive in-plane ductile behavior, it fails to accurately predict failure

of brittle material, such as cross-rolled beryllium sheets, under complex states of stress.



3. FAILURE PREDICTION WITH CLOSURE OF CUBIC

TENSOR

3.1 FAILURE PREDICTION WITH HYDROSTATIC DEPENDENCE

The criteria reviewed in chapter 2 are, to varying degrees, approximations of criteria

involving higher-order tensors and, consequently, overall failure predictions are not

expected to be accurate for all possible states of stress. Moreover, previously proposed

cubic polynomial formulations do not guarantee closure of the failure surface in multi-

dimensional space. Thus, situations where infinite strengths are predicted can occur that

lead to unconservative estimates of material strength.

In what follows, a new criterion is proposed to overcome these limitations. A cubic

form of the tensor polynomial surface is forced to satisfy a number of constraints that are

associated with the image of this failure surface. The function is projected onto the three

orthogonal, mutually perpendicular Cartesian planes (o'1, 02) , (02, 03) , and (o1, 03) to

ensure satisfaction of the constraints. Coefficients of the high-order function for beryllium

sheet material are determined by a combination of laboratory experiments and numerical

simulation (see chapters 4, 5, and 6). For simplicity, only orthotropic materials are

considered. It is shown in chapter 8 that the cubic polynomial adequately describes the

failure surface for cross-rolled beryllium sheets.

3.1.1 GENERAL STATE OF STRESS

Consider a general three-dimensional solid body that is loaded by external body and

surface forces and embedded in a fixed Cartesian coordinate system (Fig. 6). Application of

these forces causes the body to deform from the unstrained state; also, a system of internal

stresses is set up at each point in the body that oppose deformation. Fig. 7 shows the nine

independent components of stress acting on a differential element located at a general point

in the solid. These components are listed in matrix form in Eq. 48.

o'_ o'_

[or]-- o-_ o-_ o-_ ............................................................................... (48)

0"= G'zy CTzz

Application of equations of equilibrium to the differential element reduces the number of

unique stress terms from nine to six (Sokolnikoff 1964).This reduces Eq. 48 to the

diagonally symmetric form:
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............................................................................... (49)

Y
Differential
Element

FIG. 6. General Body with Surface Forces

O'71
0"3

i-_ "1"11 '

FIG. 7. Stress Components Acting at a Point
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Also shown in Fig. 7 are the contracted notational equivalents of the second-order stress

tensor. Contracted terms are used for convenience and compact representation. That is, an

alternative, single subscript form of Eq. 49 is

-or t o-_ 0.4
[o,]-- o, o, 0., ................................................................................. (50)

_0.4 0"5 o_

Often the contracted stress entries are arranged in a vector format as follows

}' ...• ,,,,oo,,,,,,.,,.,,,,,.,,.,,,,,,,,,,, ,,.,,.o.°,.,,.,°,°o,,.,... ,,

The cricomponents representa second-ordertensor. However, o-iitselfisnot a first-order

tensor.

The loads on the body increase in magnitude until failure occurs. Failure is taken

here to be the ultimate stress capacity of the structure. At the time of failure the stress at a

point in the body reaches a threshold level that is taken to be the failure stress. In the

general case, from one to all six components of stress may be nonzero when the body

reaches the failure stress.

Furthermore, a fundamental assumption is made that failure can be predicted to

occur when the following equation is satisfied at any point in the loaded body

l_,jc_,, ÷ F,:_o,jc_ u ÷ F,:kt,,,,_crk_0.,,,, _>! (i,j,k,l,ra,n = l,2,3) ................................ (52)

where oij are second-order components of the stress tensor at the point, and FO, Fgk 1, and

Fgklm n are second, fourth, and sixth-order tensors, respectively. The tensor character of

these coefficients follows from the quotient rule (Sokolnikoff 1964). When the lea hand

side of Eq. 52 is less than 1.0 the stresses are not high enough to cause failure. When a

single stress or combination of stresses cause the left hand side to equal or exceed unity,

failure occurs.

Loading of the body may be monotonic or non-monotonic. In other words,

satisfaction of Eq. 52 is independent of the path of loading. Yielding of the material is also

not explicitly considered, although Eq. 52 implicitly accounts for material flow by means of

the FO., Fij.kl , and Fqklm n terms. As an example, a long sample of the material may yield

considerably when loaded along one of its principal material axes, but behave in a brittle

manner when loaded in pure shear. Both cases can be successfully predicted with Eq. 52,

although the yield stress has been greatly exceeded in one case and not at all in a brittle

failure.
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Eq. 52 is ascalarequationandhomogeneityof a tensorequationrequiresthat each

termon theleft-handsideisalsoa scalar.Sincecij aresymmetric(Sokolnikoff 1964)it can

be shownthat thereare, in reality, six independentF 0 terms, namely Fll, F22 , F33 , F12,

FI3, and F23. In the same manner, symmetry of aij leads to 21 independent Fqk I constants,

rather than 34 = 81 that are required when there is no symmetry. Finally, the Fqklm n term

has a total of 56 independent terms as a result of symmetry. Altogether there are 83

independent failure coefficients in Eq. 52.

Furthermore, many of the coefficients can be combined and eliminated. For

example, if all components of stress at a point in a stressed body are zero except that the

normal stress in a principal material direction, rYll , is at its strength level, X, Eq. 52 reduces

to:

F,,X +F,.,X' +F,,,,,,X' _>I...................................................................... (53)

Similarly, for the case ofuniaxial compression strength o.ll = -X' along the same axis, Eq.

52 becomes

-F11X "+ F,,,X " -Flu,,,X " _>1 ................................................................. (54)

The three material constants FII, FIlII, and FlllIII are computed from two distinct

uniaxial experiments: tension and compression. Thus, one of the material coefficients must

be redundant. It has been shown by Wu and Scheublein (1974) that Fl11111 is the

redundant term. A similar consideration applies for F222222 , F333333, F121212, F131313 ,

and F232323. In summary,

Fro,,, = From = From = F,,,_ = From = F_6,6_ =0 ......................................... (55)

The number of independent coefficients, consequently, reduces from 83 to 77.

A significant reduction of the number of coefficients in the tensor polynomial is due

to the assumption that a change in sign of the shearing stress does not affect failure strength

of a general orthotropic material (Leknintskii 1981; Wu and Scheublein 1974). Thus, for

the case of all components of stress being zero except for the shearing stress o12 , Eq. 52

reduces to:

F_cr,2 + Fm2o',_ 2 21 ................................................................................. (56)

Similarly, reversing the sign of the shearing stress gives

Ft2 (-o',2) + Fm2(-o',2) 2 _>1 ........................................................................ (57)

It follows from Eqs. 56 and 57 and analogous equations for the other shearing stress

components, that

F_, =F_, =F,, =0 ................................................................................... (58)
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Using the sameassumptionof invarianceof failure due to a changein the sign of the

shearingstressleadsto:

F_,,2 = Fro, = F,2 _ ---V2_,_ = F_m = F2m = F_3,_ =
............................................. (59)

F_,,, = Fm, = Fm, = F_2,, = F.,, =0

and,

F_,,,,, = F._2, 2 = F_,,,,, = Fn, m = F_,,_2, = F_22,,a ---Fm,,. = F,2,m = F2,,,,, =

F,,,,,, = F,,,,,, = F,,.., = F,,.,, = F,,,,,, = F.,,,, = F.,,,, = F,..,_, = F,,,,,, =
........... (60)

F,,_2,,= F,,.,, = F,,.2, = &,,,, = &.,, = F_,,,,, = F..,, = F.,,. = F,,... =

F,,.. = V,,,,. = F,,,;. = F,,.. = F_,,_,,= F,.,. = F,.,. =0

Application of Eqs. 55, 58, 59, and 60 reduces Eq. 52 to 28 independent coefficients.

Using the contracted stresses of Eq. 50 and an analogous contraction of FO., Fo.kl,

and Fijklmn terms, allows Eq. 52 to be expressed in compact form as follows:

FI_ , + F,0-, + F_0-, + F.0-/ + F_20-, a +G,0-7 + F.0-, 2 + F,,0-J + F6_0-J

+2F_2o',o" 2 + 2F.o',o" 3 + 2F230-_0- j + 3F_,40-,2% + 3F_.a/0-j + 3F_0-,0-_ 2

+3F2_o'22 0-_ + 3Fm0-_0-j 2 + 3F23_0-20-j 2 + 3F_.0-_0-. _ + 3F_.o'_cr. 2 ............... (61)

+3F_.cr:r, _+3Fma, a__ +3Fmcba/ +3Fmo30-/ +3F_,,o-,o',_

4-3F2660-40-62 + 3F_6ecrja J +6 _:j0-t0-20- _ 21

The constant coefficients, F_ and F, (no summation on i), are identical to those

derived by Tsai and Wu (1971) (for i = 1, 2, 3). Therefore, the same laboratory

experiments and mathematical manipulations are used to determine the values of these

constants.

Closure is ensured if the following two conditions are met by the failure surface

(Jiang and Tennyson 1989):

(a) Images of the cubic curve projected onto the (al, 0-2), (0-1, 0-3), and (0-2, 0-3) planes are

closed.

(b) Real values of 0-4, 0-5, and 0-6 exist for given values of 0-1. 0"2, and 0-3. For this

condition to be met the following asymptotic equations must exist:

3F_,,0-_ + 3F_,,o'_ + 3F,,o" a + F,, =0 ............................................................. (62)

3Freer , + 3F,,st7. +3Fro0- , +F_, =0 ............................................................. (63)

3F_,,0-, + 3F_,60- _ + 3F_,,t:r_ + Ff, =0 ............................................................. (64)

In addition, they must not intersect the curves of condition (a).
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The analysisthat follows takes into considerationthe fact that the material fails

undera hydrostaticstateof stress.Derivationof a modifiedcriterionthat excludesthe case

of failure under hydrostaticstressis presentedin section 3.2. The latter approachis

incorporatedin theequationsfor predictingfailureof cross-rolledberylliumsheets.

3.1.2 INVESTIGATION OF NECESSARY CONDITIONS

To examine failure surface images on the three orthogonal Cartesian axes and to

satisfy the set of requirements for condition (a), crossing of the failure surface on the three

projection planes must be examined when

o-, =a, =_, =0 ...................................................................................... (65)

As an example, Fig. 8, shows projections of bounded and unbounded regions of a

failure surface onto the (_1-o'2) plane. Rearrangement of Eq. 61 to isolate o-4, o'5, and o.6

terms leads to the following form:

(3F_o'. + 3F:_o" z + 3F_O. 3 + F4.)_4: +(3F_55o'. +3F_,,o'z + 3F3s, cr , + F55)cr, 2

+(3F_, +3F_sso" 2 +3F3sso. 3 +Fs6)o62 ----(Fl_ , +F2o- 2 +F,_ 3 +Fi.o..:
........... (66)

+F2  2 + 2 +2F ,o,o.2 +2F 3o. o' +2F, o',o5 + +3F , cr ch

+3Fmo-_o-2 2 +3F223o-22o.3 +3Fmo'_o.32 +3F233o2o'_" +6F_23o',o'2o" 3 -l)

o
o

Original Surface

%

/

\

FIG. 8. Constraint and Asymptotic Equations Bounding Open and Closed
Two-Dimensional Surfaces
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Application of the conditions from Eq. 65 to Eq 66 gives

Flo- , +F20- = +Go', +Ft,o-, 2 +Fno-_ 2 +F330-x 2 +Fz:o-to" 2 +2F_30",o" 3

+2/7:3o'2o'3 +3F_20"_2o'2 +3F_30"_:o" 3 +3F_..20-_O-/ +3F,.._30-=20-3 ......................... (67)

+3F_330-tcr3 +3F2330-:o-32 4-6Fu30-_o'2o" 3 - 1 =0

In addition to Eq. 67, criteria need to be specified that are satisfied by interaction

terms F12, F13 , F23 , Fl12, F113, F122, F223, F133, and F233. This can be accomplished by

investigating the constraining planes that apply to Eq. 67. Asymptotes are obtained by

collecting quadratic terms of °'1, °'2, and O-3, and setting the coefficients of each term to

zero (Jiang and Tennyson 1989). The asymptotic equations that result are given by

F_, +3F,,,c 5 +3F,,o', =0 .......................................................................... (68)

F22 + 3F_220"_ + 3F_2.,o'., =0 .......................................................................... (69)

F. +3F,,,a, ..........................................................................(70)

2F n + 3F.20" , + 3Fu2cr 2 + 3F_2._o"J =0 ............................................................ (71)

2F u + 3F._o', + 3Fmo- s + 3F_,o- 2 =0 ............................................................ (72)

2F23 +3Fnso- 2 +3F2no- 3 ÷3Ft230- , -0 ............................................................ (73)

As shown in Appendix III, Eqs. 71-73 can be rewritten as:

(3F_nF_,, +3F_,2F_2_-6Fu2F_2_)o', +(3F_22F_ u +3Fn2F22_-6F_2F_23)O-2
................ (74)

= 2F_,F_2 _ + 2FnF_2 , -2F_2F_,, -2F_2Fn_

(3F_,,F_,; + 3FmFz, _ -6FmF_2,)O- , +( 3FmF._ + 3FmF_, _ -6FmF_e,)o- ,
................ (75)

= eF,,F,,, +eF.F,,, -eF.F,,. -2F,,F,.

............... (76)
= 2F_2F_:,+ 2F_,F_2,- 2F2,Ftn -2F2_F m

Thus, the number of independent variables of each equation reduces from three to two;

namely, for Eq. 71 the o-3 dependence is eliminated. For notational simplification the

following constants are defined:

3F_,2F m + 3F,2Fe2 J -6F_2F m = K1 ............................................................. (77)

3Fn_Ftt _ 4-3Fn_Fn, -6 Ftt2Fn, = LI .............................................................. (78)

2F_,Fns + 2Ft_F,, -2F_:Fn_ = M1 ............................................................... (79)
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3F,,_F,. +3E,,F,.-6F,.F,_, =X2 ............................................................. (80)

3F_+sF_,: + 3 FmF2, J -6 F.3Fs2 _ = L2 ............................................................. (8l)

2F, F_2s 4- 2 F3jF_2J - 2 F_sF_, 2 - 2 F_3F,.33 = M2 .................................................. (82)

3F22sFm 4-3 F223Fm -6 F233F_2a -- K 3 ............................................................. (83)

3F2,,F_:2 ÷ 3F2ssF m -6F223F_23 = L3 ............................................................. (84)

2F22F_2_ 4-2F_sF_2 _ -2F2sF_22 -2F23Fm - MS .................................................. (85)

To ensure closure of Eq. 67 none of the asymptotes given by Eqs. 68 through 73

should intersect the prescribed surface. Considering Eq. 68, for example, it can be seen that

the limit values of the coefficients FII 2 and FII 3 depend on the ultimate tensile (Y and Z) or

compressive strengths (Y' and Z') of the second and third principal directions, respectively,

as well on the magnitude of the coefficient Fll. A first estimate of these coefficients, which

is obtained via a least-square fit (see section 3.1 3), is necessary. Since the strength values

are established from independent uniaxial experiments, the following relations that confine

the magnitude OfFll 2 and FII 3 are derived

-F_, _<_r, for F.2 >0 ............................................................ (86)
3F,.

-F. 2 Y for
3F,,e

F,2 <0 ............................................................. (87)

-EJ _<-z' for
3F.,

Fm > 0 ............................................................. (88)

-Ft' 2 Z for F m <0 .............................................................. (89)
3Fro

Similarly, from Eqs. 69-73, the following constraint conditions are also necessary to

obtain closure:

-Fee _<-X' /or F_22 >0 .............................................................. (90)
3Fro

3Fro
F_22 <0 ............................................................... (91)

-F. _<-X" for
3F.,

Fm >0 ................................................................ (92)
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for F m <0 ................................................................ (93)

for Fnj > 0 ................................................................ (94)

for F m <0 .................................................................. (95)

for F.j >0 ................................................................ (96)

fOF F.3 < 0 ................................................................ (97)

MI
_<-X "

K1
for

MI

KI
>o ................................................................... (9s)

M2
___-X "
K2

for
M2

K2
>0 .................................................................. (99)

M1
_<_y ,

L1
for

M1

L1
_>o ................................................................... (1oo)

M3
_<_y,

K3
for

M3
_>0
K3

.................................................................. (lOl)

M2
_ _<-Z "
L2

foF
M2

L2
_>0 .................................................................. (102)

M3
__-Z"

L3
for

M3
_>0 (103)

L3 ,.°.o.oo,,o,4o°g°D,o.°o.._..t o,QI4o.o,o4o,.o,o.4._o_,,_**,.,..

M1
_2X
K1

for
MI

KI
<0 ................................................................... (104)

M2
_2X
K2

for
M2

K2
_<o ................................................................... (lO5)

M1
__>y

L1
for

MI

LI
_<0 .................................................................... (106)

M3
__>y
K3

for
M3
_<0 ................... (107)
K3 ""'"'"'"'"°'"'"'"'""*'"'""'"'"'"'"
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M2 M2
_>Z for

L2 L2

M3 M3
-- _>Z for
L3 L3

-- <-o..................................................................... (lO8)

-- <0 ..................................................................... (109)

3.1.3 EVALUATION OF F/) AND F_ FOR i #j

In the event that there are experimental data from n l, n2, and n3 sets of biaxial load

tests that correspond to states of stress lying in the planes (0.1i, 0.2i) (i = 1, 2, ..., nO, (0.1i,

o'3i ) (i = 1, 2, ..., n2), and (0.2i, 0.3_) (i = 1, 2, ..., n3), respectively, it is possible to evaluate

the interaction coefficients/7/), and Fiij for i ;ej by a least-square fit of the cubic Eq. 67.

However, this approach may not be sufficient to produce closed curves in the projected (o-1,

0-2), (°"1, 0.3), and (0.2, o'3) subspaces (Fig. 9). In the event that closure is not

accomplished, one or more of the constraints that intersect the failure surface are shit_ed in

space (i.e., their coefficients are modified) in such a manner that all constraints are satisfied

and the surface is closed.

As an illustration, suppose that the asymptotic plane,

F:_ +31;'122o., + 3F_2,0-_ --0 ......................................................................... (110)

which is obtained by rewriting Eq. 67 as a quadratic of 0-2, is parallel with the 0-2 axis and

intersects the open-ended failure surface as shown in Fig. 9. Adjustment in the El2 2 and

F223 terms orients this plane with respect to the cr2 axis. Closure is accomplished by

requiring that the plane given by Eq. 1 10 pass through the line (-X', (_2, -Z'), where -X' and

-Z' are uniaxial compressive strengths along the 0.1 and c 3 axes, respectively. Thus, by

judicious selection of the constants FI22 and F223, Eq. 1 10 becomes an asymptotic plane

for the failure surface (see Fig. 10). 0.1 = -X' and 0-3 = -Z' can be substituted into Eq. 67 to

obtain the following relation:

(-3 FI22X "- 3 F2_Z " + F22)0. J

+(6FmX Z" + 3FmX a + 3F2,jZ a -2F_2Y'-2F2,Z" + F2)0.2 ...... (111)

+(-3FmX Z'_ -3FmX'2Z'+ 2F_,X Z" + F,X'2 + F,Z'2 -F_X'-F,Z'-I) =O

Subsequently, for an infinity of _ roots to exist it follows from Eq. 1 1 1 that:

-3F_22X'-3FmZ'+ F22 --0 ....................................................................... (1 12)

6FmX 'Z" + 3F_,2X ,2 + 3F2. Z ,2 _2Z,2X,_eF2jZ, + F2 =0 ................................ (113)

-3FmX Z'2 -3F_,3X aZ "+ 2Fj3X Z" + F_,X "2 + Fj, Z '2 -F_X'- F3Z'- I =O ........... (114)
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Eq. 114 has the same form that would result if_l = -X' and or.3 = -Z' were substituted into

the cubic criterion of Eq. 66. Thus, it can not be considered to be an asymptote.

Similarly, isolation of quadratic terms 0.1 and 0-3 in Eq. 67 leads to constraint planes

that are similar in form to Eq. 110 and parallel to the 0-1 and 0-3 axes, respectively. This

procedure leads to four additional equations (for details see Appendix IV):

-3F.2Y'-3F.3Z'+F_, =0 ........................................................................ (115)

6F_23Y Z' + 3F_22Y .2 + 3FmZ .2 _2F_2Y._2F_jZ, + Fj =0 ................................... (116)

-3FmX "-3F233r" 4-Fjj =0 ....................................................................... (117)

6F_2,X Y" +3Ft,X "_+ 3FmY'2 -2F_3X'-2F2y" + _ =0 ................................. (118)

Using Lagrange multipliers to incorporate Eqs. 112. 113, and 115-118 as constraint

conditions, the following functional is obtained for calculation of the interaction parameters:

nl

+F,0-2,+ ' ' 2FI,0-,i + F220-2, + 2FI20.,,0.2, + 3Ft,20.1_ 0.2,
i=l

n2

2 4- 24- 2 +F.a_, +F,,a,, +F.a_, 2 +2F.0.,,0.., 3F,.0.,, 0-_,3F,2 0-,,0.2,-12'4-Z(F,0.,,
i.--I

n3

+3 Fm m, m ,2 _1)2 4- _( F2 cr2' 4-F3 m, + F220. , 2_+ F_3cr_,2 + 2 F2 j m, m ' +
t--I

4- 2 4- 23F,,,0-,, _,, 3r.,0-_,0-,, -1/4- _,(-3_,,x'-3_,,z' 4-_2) +_,(6_,A:'z' ....... (119)

+3F.2X '2 +3F_.Z'2 -2F,2X'-2F.Z' +F,) +2.(-3F,,#'-3 F,.Z' +F.)

4-44 (6F12 J Y' Z' ÷3Fi22 Y'2 +3F_3J Z '2 -2F_2 Y' -2Ft,Z' +F t )

+2j(-3FmX'-3FmY'+F3,)+26(6Ft2jXY'+3Ft_jX "2+3FmY'_-2Ft3X{-2F2jY'+F_)

where 2 i for i = 1, 2, ..., 6 represent Lagrange multipliers, and summation indices nl, n2.

and n3 range over the number of experimental tests carried out.

Interaction coefficients F O. and Fii J for i _j are determined by minimizing the

functional _. A total of sixteen equations are obtained with an identical number of

unknowns. Coefficients F i and Fii (i = 1, 2, 3) need not be obtained from this expression

since they are identical to the Tsai-Wu coefficients stated earlier. The first ten

minimizations are as follows:

_=c_ -222X'-22_Y'+40.,0._,_'IF_0- . +F_o',,. +_o',2 +F220. 2

c'_2 ,:, ..................... (120)

4-2F_20.,,0.2, 2 2 1) 04-3F_,2tT,, or2, 4-3F_20-_, a,, - =
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6'_F_3--2A'Z'-2A6X'+4a"a3' ,=1 FtcYl' + F_cr3' + ,,al,

+ 2 + 2 1) --0+2F_:_,a_, 3F.:,, as, 3Fma_, a_,-

..................... (121)

c_
- .222Z'-226Y'+4cr2, o-3,_y_F2_ ' +Gcr,, +F22¢r2,' +G, cr3,2

_F23 _=1

+2F2sa:,a3, + 3Fma2,2a3, + 3Fma_,2a2, -1) =0

..................... (122)

nl

c_o 2 _ F, +ga,, +F,,a,/+G,o'/
cTFI1_ -33.3Y'+322X "2 +6o', a2_ ,=1 an "

2 4- 2+2F_2a.a2, 4-3F_,2o',, a2, 3F_22o'2, ry.-1) =0

.................. (123)

n2

c_ F '-+ G_a_, _
c3_3 --3FX3Z'+32a X'2 +6a_/a3,_F_o" h,=_+Fjo-3, + _a_,

+2Flsa.a3, +3Fll_ali2 2 1) =0¢rj, +3Fma_, a n -

............... (124)

0" 1

FIG. 9. Open, Non-Convex Failure Surface
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0" 2

/
0"1

FIG. 10. Closed Failure Surface

nl
2 2 2

÷6 o'2, or.
o_.m =-3Fa,X'+3ay "2 _'(Sa,,=, +F2o-2, +F_,a,, +F22o-2,

+2F_2t7 . or2, + 3F_,2_,f t72, + 3F_2_o'2f a,, - 1) = 0

.3

o_ .+ ._ 2 _(I.

_J =-32_Z 32_Y +6o'2_ a3_ ,=_ F2t72_+F_t73, +F22(72,2 +FjjoSf

+2F_o_,o_,+3F_.o.,%,+3F.,a_,%,-1)=0

n2

c_ =-326X'+32.1Z'_ +6o'_,2tT,,j_(Flo', +Fjo'3, +Fi,cr, 2
_133 i=l

+2F_.o',,o'_, + 3Fjl.tT,,2tT., + 3Fmc%_cr. -1) =O

................ (125)

.................. (126)

................. (127)

................. (128)
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-- =622XZ "+624Y Z '-¢- 626.¥ Y '--- 0 ...................................................... (129)

The remaining six equations are obtained by taking derivatives of the functional, _, with

respect to 7_1, _.2, _.3, _.4, _.5, and k6 The resulting equations are identical to those ofEqs

112, 1 13, and 1 15 through 1 18

The system ofEqs 112-113, 115-1 18, and 120-129 is determinate and calculation

of the Fq and Fiij coefficients is feasible Thus, it is possible to construct a closed cubic

surface for the particular quadrant (compression-compression) under consideration The

same approach can be applied for each of the other seven quadrants of the failure surface

3.1.4 EVALUATION OF Ftj J FOR I = 1, 2, 3, AND ,I = 4 OR 5 OR 6

For the condition (b) to be met the following asymptotic equations must exist:

3 Fl,i,_001 ÷3F24400 2 -t-3F344 .-t-F44--0 ............................................................... (130)

3Fm00 , + 3F25,a 2 +3F m +F_, =0 ............................................................... (13 1)

3F_6600_ +3F26600 3 +3Fj66 +F66 =0 ............................................................... (132)

Also these planes must not intersect the projected images of the failure surface on the three

planes (_1, o-9), (_1, 0°3), and (t:r2, 003). For this condition to be satisfied Eqs. 130-132

should not intersect the failure surface defined by Eq. 67. This condition occurs only if the

planes described by these three equations are, at most, tangent to the cubic surface. For

simplicity, only one of these conditions is explicitly considered in the present discussion.

Later, the concept is generalized to incorporate equations for the other two planes.

As an example Eq 132 is written as follows:

(3F16600, +3F2,a00e +F6,)
00j -- .................................................................. (133)

3F_,,

The following form of Eq. 67 is obtained by substitution of 003 from Eq. 133 into Eq 67

and rearrangement of the result:

(A,,00/+ A_,o', _ + A,,00, + A46) ÷( B,,00J ÷ Be600 J 4- Bj600 e ÷ B,, )

......................... (134)
÷(c,,00,'o,+c,,00,00,'+c,,00,o,)--o

where, A16 , A26 , A36 , A46 , B16 , B26 , B36 , B46 ' C16 ' C26 ' and C36 are constants that are

functions of Fi, F_), and Fi66 for i = 1, 2, 3 Explicitly, these constants are given by the

following expressions (Roschke et al 1990)
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A,6 -- 27(FleJFm -F_66F366F_.) ..................................................................(135)

A26 =9(Ft662F_ + 2FI66Fa6Fm -666F66FI. -2666F:66FIj + 6662F_,) ..................... (136)

A,, = +2F,,6r66 , -3 66 66 -2666 ,,% +36,,2F,) ..................... (137)

A,6 =0.5( FaJF, -3666F66F._ -9 6662) ......................................................... (138)

B,6 = 27(1='26J F233 - 66,F266Fm ) ................................................................. (139)

B26 =9(F266263 +2F266Fe6F233-F366F66F22_-2F366F266_3 +F_6,eF22) .................... (140)

B36 =3(F6JF233 +2F2666j-3666F2666-2666F66F23 +366JF:) ........................ (141)

B,,6 =0.5( F6JF33 -3666F466 -9F_6J ) ......................................................... (142)

C16 =27(6662F2jj +2F_6,F26,Fm-F366F266FII 3 +F3662FII2-2F366FI66FI23) .............. (143)

C26 = 2 7(F266 2Fj zJ + 2 F_66F_66F233 - 666 F_66 F223 "[- F366 2 El 22 - 2 666 F266F_:3 ) .............. (144)

C,6 = 18 ( F_66F26, F33 + Fj 66F66F2,, + F266F66Fm - F_66666 F23 - F266666 F,

+F,,J F_2 - F._66F_, F_2_) ................ (145)

The closed-form solution of the bicubic Eq. 134 yields repeating, real 0.1 and 0-2

roots at the points of tangency with some side conditions The repeating roots and side

conditions are given by the relations (Jiang and Tennyson 1989; MIT Publications 1988):

27 AIJ A_J -18 A_6A26A_6A_6 + 4 At6A_6 J - A262A_J + A263A46 =0 ......................... (146)

27B, JB.,J -lnB,6B_6B,6B,_ , +4B,6B3J -B262B362 + B26_B,6 =0 .......................... (147)

C,6 =0 ................................................................................................. (148)

C_, =0 ................................................................................................. (149)

c,, =0 ................................................................................................. (150)

A functional, q_, is defined from the closed-form solution of the bicubic Eq. 134,

that yields repeating ol and _2 roots at points of tangency, and side conditions C16 = C26 =
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C36 = O.

_F takes the following form:

nl

. F,,_, +F.._,_ +F_6, +2F,.o',,cr..,+3F,,.o',, or:, +F,:_o',,o':i_

+3Fl_o'l,cr62 +3F2660"2,0"62+3F366crscr62-1) z +ll,(27A,6aAa6 " -18A,6A,_6As6A_

-/,,4AI6A363-462A362 +A:6S A._)+I.t,(Z7B,,ZB462 -ISB,6e,_6Bx6B _ +4B, eB,, s

-B=,2 Bs6= +B=,SB.) -B26= Bs62 + B:6S B_) + usC,6 +IA C._6+ la,Cs6

where ,u I through At5 are Lagrange multipliers.

The functional, W, reaches an extreme value (maximum or minimum) when:

37/ 37/ 37/ 37"
-0, _=0, _=0, _=0,

Assuming that there are nl sets of failure data, (o-1i, cr2j, cr6i) for i = 1, 2, ..., nl,

_=0
37 / 87/ 37/ 37/

--=0, --=0, _=0,
a/a_ &, &, &,

..(151)

......................................... (152)

3F m
.................................................................. (154)

Relationships similar to Eq. 134 can be derived by incorporating Eqs. 153 and 154

in the event that biaxial test data, (t31i , (Y3i, t34i) for i = l, 2, ..., n2 and t32i , CY3i, t35i for J =

1, 2, ..., n3, respectively, exist. By an analogous analysis the interaction coefficients F144,

F244, F344, F155, F255, and F3s s may be obtained, thus, yielding all interaction coefficients

necessary for determining the failure surface. Details of these derivations are in Appendix

V.

C]r I ,--_

(3F_,,o, +3F,,,,_, +F.)

A set of eight nonlinear simultaneous equations is obtained that yields coefficients F166,

F266, and F366 and numerical values for the five Lagrange multipliers.

Similarly, Eqs. 130 and 131 may be rearranged as follows:

(3F144(_[" ' -1"3F3440"._ +F44 )

_ = .................................................................. 053)
3F_,_
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3.2 FAILURE PREDICTION WITHOUT HYDROSTATIC DEPENDENCE

3.2.1 GENERAL STATE OF STRESS

Expansion of terms in Eq. 52 and application of the assumption that excludes failure

under a hydrostatic state of stress, leads to the following equation in terms of the contracted

notational form:

F_ty, + F2cr2 + Fjo 5 + F_,crl 2 + F22t7/ + F_sa/ + F_cr42 + Fs:r / + F66crJ

+2Fz2crlcr2 + 2Fijo]cr 3 + 2F2._cr2cr3+ 3Fi,2cr,2cr2+ 3FI,3cr1"-cr3

+3F_,2crzcr,'+ 3F22,cr,2cr,+3Freer,or,2 + 3F2,3cr2cr/ + 3F_,.,cr,cr,,2 .................(155)

"l'3F2440"20",t? 4-3 F344030"4 _ + 3F15scrlo/ + 3_sscrecr/ + 3 F355cr3crs2

+3F_e6cSt7 J + 3F266cr2c762 + 3Fj66o-_cr J = 1

Eq. 155 can be rearranged as follows:

(3F144o",+ 3F2_4o", 4-31='344o", 4-F44)cr42

4-(3F.str,+ 3F,,,cr,+3Freer , + F.)cr/

+(3F,:,+3F,°:2+3F,,,o,+F,,)o-/

=--(F_o, +F, cr2 +F3tr, +FHo" ,2+F22cr,2 .......................................................(156)

+F.cr/ + 2F_2cr_cr2+ 2F_a_o5 + 2F2:':j

+3F.:rs2cr2+ 3Fmo'/ o"_+ 3Fmcr:r2"

+3Fro o'22o3 + 3Freer Icrj 2 + 3F23jc_2cr / - 1)

Again, closure of this failure surface is accomplished by imposing conditions (a) and

(b) of section 3.1.1.

3.2.2 INVESTIGATION OF NECESSARY CONDITIONS

The images of the failure surface on the three planes must be examined when

t_4 = 65 = 66 = O. Thus, Eq. 156 becomes

F_o',+Fao'_4-F_cr_-/-F_,cr,_ + F_o'__ + F_cr,_+ 2F_2o,o'_+ 2F_,cr,cr,

+2F_,o'_cr_+3F_,,cr_acr_+3Fmo]2cr_ +3F_2cr,cr22+3F,...,cr/o_ .....................(157)

+3Fmo]o" / + 3Fmo'_o] _ -I =0

The asymptotes correlating the interaction coefficients are obtained by rewriting this

equation as a quadratic in terms of either _1, _2, or _3 and setting the result equal to zero.

The resulting equations are given by

F,,+3F,,2o-2+3F,1:r,=0 ......................................................................... 058)



41

+ +3F .cr, --0 ......................................................................... (159)

Fj3 + 3Fma , + 3F2jjcr 2 --0 ......................................................................... (160)

2Fj2 + 3F_,2t7 _ + 3F_22a 2 =0 ....................................................................... (161)

2F_j +3Fma , +3Fma 3 --0 ....................................................................... (162)

2F2, + 3F22,cr2 + 3F2,,cr J =0 ....................................................................... (163)

The last three equations can be rewritten as (see Appendix III for FI23 = 0):

(3F_,2FI,, +3F_,2F22,)cT, +(3F_2,F_,, +3F_22_2,)_2
........................................... (164)

= -2F_2F_, , -2Ft2F m

(3FmFj, 2 + 3F_F233)cr I +(3F_F_t 2 + 3FmF233)cr 3 = -2F_Ft_: -2F_jF2_ _............... (165)

(3F223F m +3F22jFm)a 2 +(3FmFj22 + 3F233Fm)cr_ =-2F2jFj22 -2F23Fm .............. (166)

This is done to facilitate comparison with section 3.2 1. However, it is not a simplification

since the number of independent variables remains the same for each equation. For

notational compactness the following constants are defined:

3F.,F., + 3FH2F m = KI" ......................................................................... (167)

3F_22F_, 3 + 3FmF223 -- LI" .......................................................................... (168)

-2 F_F m - 2 F_2F22_ -- M I" ........................................................................ (169)

3FmF_, 2 + 3FmF2, , = K2" ......................................................................... (170)

3FmF m + 3FmF23 , = L2" ......................................................................... (171)

-2 F_F.2 - 2 F_F2_ _ -- M2 " ........................................................................ (172)

3 FmF m + 3 F_,F m = K 3' ......................................................................... (173)

3F2,jFt_ _ 4- 3 F_,,F m -6 F22_F_2_ = L3 ' ........................................................... (174)

2 F_F_2 , 4-2 Fj,F_ - 2 F_,F m - 2 F_,F m = M 3 ". ............................................... (175)

To ensure closure of Eq. 157 the same asymptotes given by Eqs. 68 through 73 in

section 3 1.2 should not intersect the prescribed surface
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3.2.3 EVALUATION OF f/j AND Eli j FOR i ;_j

Assuming that there are experimental data from n l, n2, and n3 sets of biaxial load

tests that correspond to (0.1i, 0.2i) (i = 1, 2, ..., nl), (0./i, 0.3i) (i = 1, 2, ..., n2), and (0.2i, 0.

3i) (i = 1, 2, ..., n3), respectively, it is possible to evaluate the interaction coefficients by a

least-square fit of the cubic Eq. 157. Assuming that closure is not accomplished, one or

more of the constraints that intersect the failure surface are shifted in space (i.e., their

coefficients are modified) in such a manner that all constraints are satisfied and the surface

is closed.

To use the same illustration as in section 3 1.3, suppose that the asymptotic plane is

given by:

F22 + 3F_220. _ + 3F2230. 3 --0 ......................................................................... (176)

that is parallel with the 0-2 axis and intersects the open-ended failure surface shown in Fig.

9. Closure is accomplished by requiring that the plane given by Eq. 176 pass through the

line (-X', 0-2, -Z'). Eq. 176 becomes an asymptotic plane for the failure surface (see Fig.

10). 0-1 -- -X' and 0-3 = -Z' can be substituted into Eq. 157 to obtain the following relation:

(-3FI22X"-3F223Z"-/-F22)0-22 -/-(3Fij2X/2 ÷ 3F23.,Z"2 -2Ft2X'-2F23Z" + F2)0-2

..... (177)
+(-3FmXZ'2-3FmXaZ'+2F_XZ'+F_,X "2+F_jZ'2-FjX'-F_Z'-I)=O

For an infinity of 0-2 roots to exist it follows from Eq 177 that:

-3F_22X "- 3 F223Z" + F22 -- 0 ....................................................................... (178)

3FH2 X ,2 +3Fro Z ,2 _2F_2X,_2F23Z, + F2 =0 ................................................ (179)

-3 Fm X Z "2- 3 F_ , j X "2Z " + 2 F__X Z "+ F_, X '2 + F33Z "2- Ft X ' - F3Z "- I = O ........... (180)

Eq 180 has the same form that would result if c_l = -X' and a 3 = -Z' were substituted into

the cubic criterion of Eq. 155.

Isolation of 0-1 and o-3 quadratic terms in Eq. 157 leads to equations of constraint

planes that are similar in form to Eq. 176 and are parallel to the c_1 and c_3 axes,

respectively. These equations are:

-3F, J'-3F,_Z'+F,, =0 ........................................................................ (181)

3FraY "2+ 3F,.Z "_-2F, y'-2F.Z" +F, =0 .................................................. (182)

-3F,.X'-3F_.Y'+F. =0 ....................................................................... (183)

3F,..r "_+ 3F_y _ -2F, jX'-2FJ" + F, =0 ................................................ (184)
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Using Lagrange multipliers to incorporate Eqs. 178, 179, and 181-184 as constraint

conditions, the following functional is obtained for calculation of the interaction parameters:

nl

_ =,_-'(Fl0-,, +F2cr2i +F1,o'li 2 +2Ft20",,0"2, +3Fl,zcr,20-2, +3Fi220-,,0-2i 2 -1) 2
i=l

n2

2./. 2 - 2+_-'(Fl0-,, +F3o-3i +Fl,cr,, F330-3, +2F_3cr,,0-3i +3Fi,3o,,'o-3, +3Ft33o-,,0-3, 1)2
i=l

+F:r,, + ._ + 2 . . 3 .. .' 2F,,0-,, F33o-_i +2F,3cr, io3i 4- F,,3cr,,'0-3, +3F2330-2i0-3, -1) 2 .... (185)
i=l

+2,(-3F_22X'-3FmZ' +F22)+ 22(3F_,2X '2 +3FmZ '2 -2F_,X'-2F2,Z' +g 2)

+2,(-3F.y'-SF.,Z' +F_,)+,t,(3F_,:Y" +3F.,Z'2 -2F_y'-2F_sZ' 4-6)

+2,(-3mX'-3Fz_y' +Fj,) +26(3F_,._X '2 +3FraY'2-2F_,X'-2F2y' +F,)

where _,i for i = 1, 2, ..., 6 represent Lagrange multipliers, and summation indices nl, n2,

and n3 range over the number of experimental tests carried out.

Minimizing the functional _ yields the interaction coefficients F 0 and Fiij for i Cj.

Fifteen equations are obtained with an identical number of unknowns. Coefficients F i and

Fii (i = 1, 2, 3) need not be obtained from this expression since they are identical to the

Tsai-Wu coefficients stated earlier.

The fifteen equations are the same as those indicated in Eqs. 112, 113, 115 through

118, and 120 through 128 of section 3.1. The sixteenth equation, which would correspond

to Eq. 129, does not exist since the modified criterion is independent of hydrostatic failure

stress and, thus, the interaction coefficient FI2 3 is not part of the contracted tensorial

polynomial.

3.2.4 EVALUATION OF g_//FOR i = 1, 2, 3, ANDj = 4 OR 5 OR 6

For condition (b) in section 3.1.1 to be met the following asymptotic equations must

exist:

3F_,0-, + 3F2,_0- 2 + 3 F_,,,_o3 4-F44 =0 ............................................................ (186)

3 Fts, drt + 3 F_,,o" 2 + 3 Fj,j0-, +Fj5 =0 ............................................................ (187)

3 F_,60-, +3F2,,0- 2 + 3 F3,_,:r, + F66 =0 ............................................................ (188)

The resulting asymptotes must not intersect projected images of the failure surface on the

three planes (or1, 0-2), (or1, 0-3), and (or2, 0-3). For this condition to be satisfied Eqs. 186-188

should not intersect the failure surface defined by Eq. 157. This condition occurs only if

the planes described by these three equations are, at most, tangent to the cubic surface. For
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simplicity,only one of these conditions is explicitly considered in the present discussion.

Later, the concept is generalized to incorporate equations for the other two planes.

As an example, Eq. 188 is written as follows:

(3r,,:, +F,,)
o-, = .................................................................. (189)

3F_,,

The following form of Eq.

rearrangement of the result:

( A,,o-/ + A26O-,2 +,4360" 1 + A4,) +(B,6O-J + B26O-22 + B36G 2 +B46 )

+(c,,o-,'o-,+c,,o-,o-,'+c,,o-,o-,)=o

157 is obtained by substitution of o-3 from Eq. 189 and

......................... (190)

where, AI6 , A26 , A36 , A46 , B16 , B26 , B36 , B46, C16 , C26 , and C36 are constants that are

functions ofFi, FO, and Fi66 for i = 1.2, 3. Only the C16 , C26 , and C36 constants depend

on the coefficient F123; all others are the same as those described by Eqs. 135-142. The

relations for the three constants are given by the following expressions (Roschke et al.

1990):

C,_ =27(F_,JF m +2F_,,F2,,F m -F366_,6_, +FaaJF_,2) ................................. (191)

C2, =27(F2,JF m +2_6,F2,,F2j_- Fj,,F_,aF2_, _ +F_,jF_22) ................................. (192)

G6 = 18( F_66F2,,sF3_ + F_6,_F66Fz33+ F2,6F66F m - _66F_66F2j - F266F3,,F . + F_6J F_2) .. (193)

The closed-form solution of the cubic Eq. 190 yields repeating, real o I and 0 2 roots

at the points of tangency with some side conditions. The repeating roots and the side

conditions are given by the relations:

2 7AtJA4J - 18 Az6 A2_ A_eA46 + 4AI6 A3J - A262 A3J + A2J A46 = 0 ......................... (194)

27B,62B4J -18B,,B2,B,,B4, +4B,6B3J -B_62Bj62 + B26JB46 =0 .......................... (195)

C_, =0 ................................................................................................. (196)

C2, =0 ................................................................................................. (197)

Cj, --0 ................................................................................................. (198)

A functional, qJ, is defined from the closed-form solution of the bicubic Eq. 190,

that yields repeating 01 and 0 2 roots at points oftangency, and side conditions C16 = C26 =
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C36 = 0. Assuming that there are nl sets of failure data, (01i , t:r2i , o'6i ) for i = 1, 2, ..., nl,

takes the following form:

nl

4- 2 ._ _"4- 2 . . . 2W=_-(Flo',i 4-F20"_, Fl,o" . +F, ocr,," F66cr6i +2Fpo-,,cr, i +3Ft,,o',i o':i
i=l

4-3Fi220",iO'2i 2 4-3F1660",iO'62 +3F:e6cr.,,cr6" +3Fs66cr3o-62 -1) a

+Pl (27A16ZA,_ = - 18AI6/L..6Ax6A46 -/-4AI6A36 x - A:6" A362 + Az63 Am)

+/u=(27B16=B462-18BlaBa6Bx6B,_ 4-4BI6B363 -Bz62B362 4-B263B46)

+/a,G 6 +/a,C=_+&C3_

............. (199)

where/a I through ,u 5 are Lagrange multipliers.

The functional, q_, reaches an extreme value (maximum or minimum) when:

d_ d_ d_
--=0, _=0,

d_ d_ d_
_=0, _=0, --=0
&, &, &,

-- ----0,

d7 /
-- _---Ol

0/.,,
......................................... (200)

A set of eight nonlinear simultaneous equations is obtained that yields coefficients F166,

F266, and F366 and numerical values for the five Lagrange multipliers.

Similarly, Eqs. 186 and 187 may be rearranged as follows:

( 3 F_,,cr, ÷ 3 F,,_o 3 4-F_4)
a_ = .................................................................. (2Ol)

3G.

(3&,o, +3F,.o, +F,,)

3F,.
..................................................................(202)

Relationships similar to Eq. 190 can be derived from Eqs. 201,202, and Eq. 156 in

the event that biaxial test data, ((Yli, 03i, t74i) for i = 1, 2, ..., n2 and (Y2i, 03i, 05i for i = 1,

2, ..., n3, respectively, exist. By an analogous analysis the interaction coefficients F144,

F244, F344, F155, [7255, and F355 may be obtained, thus, yielding all interaction coefficients

necessary for determining the failure surface.



4. EXPERIMENTAL INVESTIGATIONS

4.1 INTRODUCTION

In order to use the proposed criterion that is derived in sections 3.1 and 3.2 for

failure prediction, the failure strength coefficients need to be experimentally determined.

After these coefficients are known, Eq. 61 can be used to predict failure of a structure using

components of the second-order stress tensor at each point in the body and assuming that

hydrostatic failure can not be induced. The primary focus of the next three chapters is a

description of a number of destructive laboratory experiments that have been conducted on

cross-rolled beryllium sheet. Results and combinations of the results of these tests provide

the failure coefficients for this material.

Figs. 11 through 14 give a complete list of the failure coefficients that are to be

determined and a graphical listing of the required stress combinations. Axis labels 1, 2, and

3 correspond to the principal rolling, secondary rolling, and through-thickness directions,

respectively. In addition, directions 4, 5, and 6 are associated with stresses acting on the

(1-3), (2-3), and (1-2) planes, respectively. Tests in Fig. 11 are designed to place the

specimen in a state of stress that causes failure due to normal stresses acting on each of the

principal directions of the material. The last experiment shown in Fig. 11 is designed to

yield the normal interaction coefficients for an in-plane biaxial state of stress. Each test

shown in Fig. 12 induces a state of pure shear in a prescribed orthonormal direction. Figs.

13 and 14 show the experiments necessary for obtaining the normal-shear interaction

coefficients.

A seminal reference for the experimental program is a report by Fenn et al. (1967).

The report outlines extensive experimental work carried out on cross-rolled beryllium.

Results of these tests are used in the current study for both initial constitutive model

specifications and for estimation of the strength parameters for beryllium sheet. A summary

of primary strength properties from the report by Fenn et al. is listed in Tables 4 and 5. It

should be noted, however, that results in these tables were obtained from experimental

work for 1.96-mm (0.077-in.) thick cross-rolled beryllium sheets. The current work

involves 2.54-mm (0.10-in.) thick plates.

Not only does the report by Fenn et al. list test results for SR-200 material that is

thinner than the current investigation, but the technique used for determining the through-

thickness tensile strength is questionable. Specimens for this test were made from wafers of

beryllium sheet that were diffusion-bonded between two pull rods of beryllium block. The
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bondingprocesswascarriedout for 10minutesat 649°C(1,200°F). Interlayersof 0.508-
mm(2.0 × 10-3-in.)copperfoil werealsoused. Althoughthis temperatureiswell belowthe

recrystalizationtemperaturefor beryllium, reheatingthe material to 649°C causesthe

residualstressesthat are presentfrom the manufacturingprocessof cold rolling to be
relieved. Alterations in the stressstatecan affect subsequentbehavior of the material

(Kojola 1961). Althoughthereis no evidencethat the moduli areaffectedby thebonding

process,reductionof the ultimate tensile properties have been reported (Asceland 1989).

Failure

Coefficients
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FI1

F 2

F22

F 3

F33

El2
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%
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' 2
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Experiment(s)
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1, 2, and 3 indicate primary rolling, secondary rolling,
and through-thickness directions, respectively.

FIG. 11. Experimental Determination of Failure Coefficients - A
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FIG. 12. Experimental Determination of Failure Coefficients - B



49

Failure
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FIG. 13. Experimental Determination of Failure Coefficients - C
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FIG. 14. Experimental Determination of Failure Coefficients - D
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TABLE 4. Elastic Properties of 25.4-mm (0.10-in.) Thick SR-200 Sheet 1

Direction of Loading

(1)

Longitudinal

Long transverse

Short transverse

(Through-thickness)

Elastic Modulus

(GPa)

(2)

298.7

293.6

347.5

Poisson's Ratios

(3)

012 = 0.0768
o13 = 0.0137

O21 = 0.0752

023 = 0.0190

03] = 0.0162
032 = 0.0230

Subscripts 1, 2, and 3 indicate the primary rolling, secondary rolling, and through-thickness directions, respectively.

1.0 ksi = 6.9 MPa

1Fenn et al. 1967

TABLE 5. Uniaxial Tensile Strength of 25.4-mm (0.10-in.) Thick SR-200
Sheet 1

Direction

(1)

Longitudinal

Long transverse

Short transverse

Yield Stress

(MPa)
(2)

383.4

386.1

Ultimate Stress

(MPa)

(3)
537.6

564.0

200.0
1.0 ksi = 6.9 MPa

lFenn et al. 1967

The remainder of this chapter deals with in-plane shear and biaxial experiments

carried out at NASA Johnson Space Center (Henkener et al. 1991) and in-plane tensile tests

carried out at Texas A&M University (Mascorro 1991; Mascorro et al. 1991) on 2.54-mm

(0.10-in.) thick SR-200 sheet material. All experiments were performed in a controlled

laboratory environment with constant room temperature and pressure. Experimental

strength parameters deduced from these tests are used in conjunction with the results from

tests reported in chapters 5 and 6 for estimation of principal and interaction coefficients.

Tests in this chapter are presented in a synoptic way for the sake of completeness with

respect to using results of known experimental work. Many of the laboratory experiments

have also been simulated numerically in order to check or complement information obtained

from transducers. Details of the simulation results are presented with each experiment. In

many cases the predicted displacements, strains, and stresses for the beryllium specimens

are reported by means of gray-scale fringe plots. More information concerning the

numerical simulation is available in chapter 8.
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4.2 TENSILE STATE OF STRESS

4.2.1 Specimens Aligned with Material Axes

Six plate specimens similar to those shown in Fig. 15 were obtained by NASA

(Henkener et al. 199l) from Electrofusion Co. Three specimens have the principal rolling

direction aligned with the loading axis and three have the secondary rolling direction aligned

with the line of loading. Unfortunately, three of the specimens were sanded either on one or

both sides. This is believed to have caused the beryllium to fail prematurely at a load near

its yield strength. Results from the other three successful test specimens are listed in Table

6. A comparison of the results obtained by NASA with the ones tested by Fenn et al.

(1967) shows that the tensile strengths for the 1.96-mm (0.077-in.) and 2,54-mm (0.10-in.)

plate thicknesses are in agreement. However, in the secondary rolling direction the

observed tensile strength of 497.1 MPa (72.1 ksi) for the 254-mm (0,10-in.) thick plate

material is considerably lower than the 564.0 MPa (81.8 ksi) reported by Fenn et al. (1967).

MATERIAL AXES

Pri.ucipM
_tt_

Direction [ Direct/onR°]J/ngSec°ndary

1.00--I

oI L

1 in. = 25.4 mm
Dimensions in inches

-_ _-0.2

1.50

l
,_lumi_u_m

R0,025 Pads
TYP.

Epoxy [_
Bo .

0.50

1.10

FIG. 15. In-Plane Tensile Specimen

Although two longitudinal and two transverse strain gages are used with three of the

tensile specimens (Henkener et al. 1991), inconclusive results are reported for the total

elongation. This is due to inconsistent specimen treatment (some specimens were sanded
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whileotherswerenot) and variations in the rate of Ioadings for each specimen. In addition,

the measured ultimate strengths exhibit significant variations, possibly for the same reasons.

Thus, for the estimation of the failure coefficients the tensile results reported by Fenn et al.

(1967) are used rather than the results reported by Henkener et al. (1991). Numerical

simulation was not carried out for this experiment.

TABLE 6. Normal In-Plane Tensile Strengths for Cross-Rolled Beryllium

Specimen Number Orientations Failure Stress

(1)

1

2

3 a

Average

1

2 b

3 a

Average c

aElectrofusion data; t_Fenn et al. (1967);

(2)

Longitudinal

Transverse

M_a

(3)

528.8

533.0

551.6

537.8

497.1

551.6

579.2

564.0

CAverage of last two specimens.

(ksi)

(4)

(76.7)
(77.3)

(78.0)

(72.1)
(80.0)

(81.8)

4.2.2 Specimens with Material Axes Rotated 45 °

Three beryllium sheet specimens were loaded in a uniaxial testing machine and

tested to failure. A biaxial state of stress in the orthotropic material was achieved by

orienting the material axes 45 ° from the direction of the load (Fig. 16). To minimize the

possibility of failure at the grips, the three specimens were designed with curved transitions.

Each specimen was loaded at a rate of 68.9 N/s (10 lb/s) using an 89-kN (20-kip) capacity

MTS uniaxial testing machine. An MTS extensometer (Model 632.86B-03) was used to

record through-thickness strains. Details of these tests are reported by Mascorro (1991).

An average Young's modulus for the three specimens is measured to be 29.5 x 104

MPa (42.8 × 106 psi) (Mascorro 1991). The average Poisson's ratio reported for in-plane

and through-thickness deformations is 0.09 and 0.15, respectively. The latter number

appears to be an order of magnitude larger than the through-thickness Poisson's ratio

reported by Fenn et al. (1967) and an estimate from an ultrasonic technique (see section

7.2). It is believed that the inconsistency is due to a miscalibration of the MTS

extensometer (clip gage).
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MATERIAL AXES

Principal Secondary
Rouing Romn_
Direction Direction
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2.00
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1
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TYP.

0.50

I T1.50L

--_ _-0.2

A Aluminum
Pads

Epox7
Bond

FIG. 16. Off-Axis In-Plane Tensile Specimen

Specimen 1 failed at a very low load of 369.5 MPa (57.7 ksi), that occurred almost

immediately after yield. This may have been caused by the MTS clip gage scratching the

surface or from a surface flaw in the specimen. To avoid scratching the surface of the

second specimen 02032-mm (0.0080-in.) thick brass shims were placed between the

specimen and the contact points of the MTS clip gage. Brass shims were not placed on

specimen 3 because it was loaded to failure chronologically before the other two specimens.

In order to compare elastic properties obtained from an earlier test (Fenn et al.

1967) with data from this experiment, the stress tensor aligned with the loaded axis is

transformed to the material axis (Lekhnitskii 1981). Components of the transformed stress

tensor (see Appendix VI) are then substituted into the three-dimensional orthotropic

elasticity equations that relate stress and strain. This leads to the stiffness equations:

S, =crx= 2E, E_ .............................................................................. (203)
e, E 2 - u,2E ,

S2x =crx- 2E'E2 .............................................................................. (204)
e2 E_ - o2jE 2



55

Sj,, -- cr.__.___- 2E_E2 ........................................................................ (205)
o% ojIE 2 + u_2E J

where E 1 and E 2 are moduli in the longitudinal and long-transverse directions, respectively;

Six and S2x are the measured stiffnesses in the long (principal) rolled and transverse rolled

(secondary) directions due to stress in the loaded "x" direction, respectively; and vO. are

Poisson's ratios. Finally, engineering constants reported by Fenn et al. (1967) are

substituted into Eqs. 203-205 for comparison with the off-axis tests. Results shown in

Table 7 are in satisfactory agreement except for an order of magnitude difference in the

short-transverse stiffness as discussed earlier.

Failure stresses for each of the specimens aligned 45 ° off of the material axes are

listed in Table 8. Based on results from the second and third specimens (Mascorro 1991),

failure strength under biaxiai stress is 533.1 MPa (77.3 ksi). This is 4.7 MPa (0.7 ksi) less

than the failure stress observed when the material is loaded only in the long (primary)

direction, and 30.9 MPa (4.5 ksi) lower than the failure stress predicted for a specimen

loaded only in the transverse (secondary) rolled direction.

TABLE 7. Comparison of Transformed Engineering Constants with

Computed Stiffness

Stiffness

E X

Syx
Slx

S2x

S3x

G12

Off-Axis Experiment
GPa

(2)
295.0

-3,062.0

644.0

638.0

1,990.0

137.1

(103 ksi)

(3)
(42.8)

(-444.1)

(93.3)

(92.5)

(288.6)

(19.9)

Fenn et al.

GPa

(4)
295.2

-3,753.5

646.7

635.0

18,084.0

136.9

(1967)

(103 ksi)

(5)
(42.8)

(-544.4)

(93.8)
(92.1)

(2,623.0)

(19.9)

TABLE 8. 45 °

Specimen Number

(1)

1

2

3

Average

aNot used to determine average.

Off-Axis Tensile Strengths under In-Plane Load

Orientations Failure Stress

(2)
MPa

(3)

397.8

529.2

537.0

533.1

45*

45 °

45 °

(ksi)

(4)

(577) a

(76.8)

77fy2 9
(77.3)
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The off-axis test results are useful for computing the failure interaction coefficient

F12 (see Eqs. 119-120 and Fig. 11), since the stress transformation from the load to the

material axes yields stress components in the material directions as follows:

0._ = 0"2 = 0.50",, .................................................................................. (206)

Appendix VI shows details of this transformation

For this study, the in-plane tensile strengths in the principal and secondary material

axis orientations, are taken to be

X_ =537.8 MPa (78.0ksi)
........................................................................ (207)

)(1 =564.0 MPa (81.8ksi )

Numerical simulation was not performed on these tests

4.3 IN-PLANE SHEAR STATE OF STRESS

NASA conducted an experiment on five cross-rolled beryllium sheets having a

special geometry and a load that is designed to induce a shear failure (Henkener et al.

1991). Geometry and loading of the specimens are illustrated in Figs. 17 and 18,

respectively. Five nearly identical specimens are tested in order to obtain adequate data for

statistical sampling analysis. Three specimens (3, 4, and 5) are deliberately sanded in a

specified direction: two are parallel and one is oriented 45 ° with respect to the loading

direction All specimens are brought to failure via displacement-controlled loading at a rate

of 1.1 x 10-2 mm/s (2.0 x 10 .2 in./min). The specimens are instrumented with rosette strain

gages for determination of yield and ultimate strain components (Henkener et al. 1991).

Specifically, strain gages were mounted in the longitudinal, long transverse, and short

transverse directions for three specimens. The other three specimens were instrumented

using a ladder gage, a line of ten closely-spaced gages, in the direction of the applied load

for possible observation of the Luder's band effect

Table 9 summarizes the yield and ultimate in-plane shearing strengths obtained from

this experiment. The fixture-to-specimen bond of one of the unsanded specimens failed

during loading (specimen 1) and, thus, the ultimate shearing strength was not attained. The

two specimens that were sanded parallel to the loading direction (specimens 3 and 4) did

not appear to be affected by this action However, specimen 5 was sanded 45 ° off axis and

failed prematurely at well below the ultimate shearing strength for an unsanded specimen.

Fig 19 shows the failure pattern of cracks for specimen 3.

Numerical simulation of the loaded structure at failure is used for comparison with

experimental results. The simulation is accomplished using eight-noded, plane stress
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elements. Specialcare is taken in modeling the geometry of the region surrounding the

notches of the shear specimen. The numerical model considers linear, orthotropic material

behavior and effects of large displacement. An average ultimate load of 19.1 kN (4.3 kip) is

used for the numerical analysis. Fringe plots of displacements, strains, and stresses are

shown in Figs. 20-27 for the ultimate load. Figs. 20 and 21 show components of axial and

transverse displacement, respectively. The leftmost point of the structure is restrained from

displacement and load is applied parallel to the horizontal axis. Figs. 22-24 display axial (e-

l), transverse (_), and shear (66) components of strain, respectively. The region between

the notches has approximately -5.1 × 10.4 m/m (-5.1 × 10 .4 in./in.), -3.3 x 10 .4 m/m (-3.3 x

10 .4 in./in.), and 2.4 x 10.3 m/m (2.4 x 10.3 in./in.) of axial, transverse, and shearing strain,

respectively, at failure (Figs. 22-24).

Figs. 2527 show components of normal (o-_), transverse (_), and shearing stress (or

6), respectively. In-plane shearing stresses in the portion between the two notches of the

small plate are the prevailing stresses. Moreover, it is observed that the distribution of all

components of stress in this region is nearly constant from one notch to the other (see Figs.

2527 ). The average in-plane shearing stress in this region is approximately 313.0 MPa

(45.4 ksi). The magnitude of the normal and transverse stresses in the same region,

although considerably smaller than that of the shearing stress, are not small enough to be

neglected. The normal stress is approximately -68.0 MPa (-9.9 ksi) and the transverse

stress is approximately -149.6 MPa (-21.7 ksi).

I l I[I I I

I

Top View

3.38 _-!

2'_88_

+

0.12.R

Front View

Dimensions in inches

1 in. = 25.4 mm

1.5o

1.oo

Side V_ew

FIG. 17. In-Plane Shear Specimen

0.10
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FIG. 18. Loading Arrangement for In-Plane Shear Test

TABLE 9.

Specimen
Number

(1)
1

2

3

4

5

In-Plane Shearing Strengths (Henkener et al. 1991)

Surface

Finish

(2)
Unsanded

Unsanded

Sanded

Sanded

Sanded

MPa

(3)
204.8

204.8

206.8

203.4

203.4

Yield

(ksi)

(4)
(29.7)

(29.7)

(30.0)
(29.5)

(29.5)

Ultimate

MPa

(5)

300.6

311.0

307.5

265.5

(ksi)

(6)

(43.6)

(45.1)

(44.6)

(38.5)
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FIG. 19. Fracture Pattern for Unsanded Shear Specimens

Units in in.
i in. = 24.5 mm

Y

Z--×

-.OZB

FIG. 20. Shear Specimen Fringe Plot of Axial Displacement
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Units in in.

1 in. = 24.5 mm

i
Z-----X

' i

FIG. 21. Shear Specimen Fringe Plot of Transverse Displacement

FIG. 22. Shear Specimen Fringe Plot of Axial Strain,
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FIG. 23. Shear Specimen Fringe Plot of Transverse Strain, c 2

FIG. 24. Shear Specimen Fringe Plot of Shearing Strain, c 6
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Units in ksi

1 ksi = 6.89 MPa

FIG. 25. Shear Specimen Fringe Plot of Axial Stress, 0-1

J

Units in Imi
1 ksi = 6.89 MPa

FIG. 26. Shear Specimen Fringe Plot of Transverse Stress, 0-2
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Units in ksi
1 ksi = 6.89 MPa

FIG. 27. Shear Specimen Fringe Plot of Shearing Stress, 0-6

Although a state of pure shear is not obtained from this experiment, a value of pure

shearing stress can be computed on a differential element located equidistant between the

notches. Using an elementary stress transformation (Dally and Riley 1978) yields a pure

shearing stress of 296.5 MPa (43.0 ksi) on a plane that is 2.0 ° from the x-axis.

The numerical analysis discussed earlier agrees reasonably well with the results

obtained from the experiment. Taking an average of the shearing strength of specimens 2,

3, and 4 yields an ultimate in-plane shearing stress of 306.4 MPa (44.4 ksi). This value is

obtained by dividing the ultimate load by the area between the notches for each specimen

and averaging the results. It is noted that the experimentally determined ultimate shearing

stress is approximately 2% lower than the numerically predicted value. In order to be

conservative, the experimental value is chosen to represent the in-plane shearing strength of

cross-rolled beryllium. In chapter 5 this failure stress is compared with the average in-plane

shearing strength computed from another experiment. The smaller of these two values is

used as the final shearing strength to compute principal and interaction strength coefficients.
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4.4 IN-PLANE BIAXIAL STATE OF STRESS

Interaction coefficients FI2, F112, and F12 2 are established by experimental

determination of the in-plane biaxial strength of the material (Fig. 11). A number of

experimental arrangements have been proposed for obtaining the biaxial strength of a plate

structure. The most recent approach is discussed by Ferron and Makinde (1988). To date

all of these techniques require slot or hole drilling and/or a reduced middle section of the

structure to ensure that the material fails near the center of the plate. Beryllium cross-rolled

sheet can not be adapted to these geometrical requirements due to the sensitivity of its

strength to holes and surface flaws that are invariably developed during construction of such

specimens.

A different approach is used in the current study to obtain a biaxial state of stress

that causes failure in the material. A series of tests on circular plates made of cross-rolled

beryllium was conducted at Johnson Space Center (Henkener et al. 1991). Two 165.1-mm

(6.5-in.) diameter circular disks were tested to failure. A schematic of the loading

arrangement is shown in Fig. 28 for two loading situations. Fig. 29 shows linear-variable-

differential-transformers (LVDT) and strain gage locations. The first disk was loaded with

a concentric ring that is 25.4 mm (1.0 in.) in diameter. Experimental data were established

at 50, 75, and 100 percent of the material's yield stress, as well as at ultimate loading.

Transducer output includes readouts from strain gages and LVDTs. A similar procedure

was repeated for the second beryllium disk using a 50.8-ram (2.0-in.) concentric ring load.

The purpose of this experiment is to establish a state of stress that closely

approximates pure bending moment within the loading rings. Significant shearing stresses

and torsional moments are avoided by concentric application of the load ring about the

center of the plate. This can be regarded as the two-dimensional extension of the well-

known four-point bending test of a simply-supported beam.

Simulation of the 25.4-mm (1.0-in.) and 50.8-mm (2.0-in.) load experiments is

carried out using six-hundred twenty-noded isoparametric hexahedral elements with ten

elements through the thickness of the plate. Orthotropic material properties for cross-rolled

beryllium are used with through-thickness inhomogeneous distribution of material (see

chapter 8). In addition, large displacement theory is considered. The numerical model is

constrained from displacement in the out-of-plane direction along the cylindrical aluminum

support. A uniformly distributed line load is applied in a concentric manner to simulate the

ring loadings. Due to symmetry of loading and geometry, only one-quarter of the actual

plate structure is modeled with finite elements. A summary of the results of these

experiments is shown in Table 10. Each experiment is discussed in the following sections.
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FIG. 28. 25.4-mm (1.0-in.) and 50.8-mm (2.0-in.) Ring Loadings
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FIG. 29. Gage and LVDT Locations for Circular Plate Specimens
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TABLE 10. Experimental In-Plane Biaxial Stress Output - NASA

State of Stress

(i)
50% of yield

75% of yield

100% of yield
Failure

25.4-mm Ring Load
]V[Pa

(2)

191.7

289.6

379.9

834.3

(ksi)

(3)
(27.8)

(42.0)

(55.1)
(121.0)

a Maximum Failure Stress = 930.8 MPa (135.0 ksi)

50.8-mm

/V[Pa

(4)
188.2

283.4

370.9

827.4 a

Ring Load

(ksi)

(5)

(27.3)

(41.1)

(53.8)
(120.0)

4.4.1 25.4-mm Ring Load

In order to obtain the components of stress at the failure load, the numerically

predicted displacements and strains are compared with those measured by the transducers

during the experiment. Fig. 30 compares experimental and numerically predicted vertical

displacements along a radial line at the yield and ultimate stress levels. These two cases

correspond to loads of 1.9 kN (0.4 kip) and 6.0 kN (1.4 kip), respectively. Experimentally

measured displacements at the center and at one intermediate location between the

supported edge and the center of the plate are also plotted for comparison with the finite

element prediction. Agreement between measured and predicted values is excellent at the

load level that causes the yield stress and within 1% at the ultimate load. Fig. 31 shows a

fringe plot of vertical deflection that is obtained from the finite element analysis. Figs. 32

and 33 show numerically simulated in-plane displacement components in the two

orthogonal x and y directions, respectively. In the vicinity of the 25.4-mm (1.0-in.) ring

these in-plane components are several orders of magnitude less than their vertical

counterparts.

Fig. 34 shows a graph of strain versus distance from the center of the plate. This

figure provides a simple comparison of finite element and experimental results for normal

strain at the yield and ultimate stress levels of load. Experimentally determined normal

strains at gage locations on the bottom of the plate (Fig. 29) are in good agreement with the

finite element simulation.

Distribution of normal strain in the direction of the longitudinal (principal) axis of

rolling, Cl, at the ultimate load level is also shown by means of a fringe plot in Fig. 35 for

one quadrant of the plate. This figure shows strain on the bottom surface of the plate. A

nearly symmetric pattern is observed. The highest gradient of strain occurs well outside of

the line of the ring load.
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FIG. 30. Vertical Displacement along a Radial Line at Yield and Ultimate

Stress for 25.4-mm (1.0-in) Load

Units in in.

lin. 24.5mm

!

FIG. 31. Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of Vertical
Displacement
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FIG. 32. Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of In-Plane

Displacement in the X-Direction
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FIG. 33. Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of In-Plane

Displacement in the Y-Direction
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FIG. 34. Radial Strains at Yield and Ultimate Stress for 25.4-mm (1.0-in) Load

FIG. 35. Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of 61 Strain
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Distribution of normal strain, #2, in the transverse direction of cross-rolling at the

ultimate load is shown in Fig. 36 for the same quadrant of the plate. Tile magnitude of this

bottom surface strain is approximately the same as tile normal strain that occurs in the

longitudinal direction of crosa-rolling (Fig. 35) Tile distributions are nearly mirror images

of each other.

A gray scale fringe plot of' in-plane shearing strain, e'-_, is shown in Fig. 37 for the

bottom surface of the plate• This figure illustrates the tilct that although this component of

strain is significantly large outside of and at the location of the loading ring (-6.3 x 10-4

mm/mm), inside the ring the magnitude of this strain is almost negligible (-3•0 × 10.5

mm/mm). Within the 25.4-mm ring, however, the out-of-plane strain, @, in the through-

thickness direction is approximately 20% of 61 and 62 as shov, n in Fig. 38. Although Fig.

38 illustrates this phenomenon only for ttne bottom surt'ace of tile structure, the statement is

valid for all the through-thickness, inhomogeneous layers that comprise the plate• Finally,

fringe plots in Figs. 39 and 40 show that out-of-plane shearing strains can be readily

neglected due to the fact that they are at least an order of magnitude smaller than the in-

plane components of strain.

I

FIG. 36. Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of c 2 Strain
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¥

FIG. 38.
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Z .......... ×

FIG. 39. Plate with 25.4-mm Ring at Ultimate Load Fringe
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X

FIG. 40. Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of c s Strain
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Distributions of stress, obtained numerically, sllow the same trends as the strain

plots discussed earlier. Figs. 4146 illustrate tile variation of each component of stress

throughout one-quarter of the plate From these plots it can be deduced that at the center

of the plate there exists what is essentially, a state ofbiaxial norrnal stress. The numerical

model yields biaxial normal stresses of 841 :" XlPa (l °''.. ksi) and 8205 XlPa (t 19 ksi) for cr1

and o-2, respectivel;',, x,,ithin a radial distance of __"q mm (0 1 in) From the center of the

plate. Although the center zone is not absolutely ti-ee from all other components of stress,

this test provides a reasonably good means for determining the biaxial t'ailure strength for

cross-rolled bep,'llium sheet.

4.4.2 50.4-mm Ring Load

A second circular plate is loaded to tidlure by means of a circular ring that is 50.8

mm (2.0 in.) in diameter (Fig. 28). As mentioned earlier, the only difference between the

two experimental plates is the diameter of" the load ring Locations of transducers are

shown in Fig. 29.

,Y

i

Z...... C'X

Units in psi
1 psi = 6.89 kPa

FIG. 41. Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of 0-1 Stress
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Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of 0-3 Stress
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Units in psi

1 psi = 6.89 kPa

FIG. 44. Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of 0-4 Stress
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FIG. 45. Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of crs Stress
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FIG. 46. Plate with 25.4-mm Ring at Ultimate Load Fringe Plot of or6 Stress

Results of nmnerical simulation are veritied by comparison with actual

displacements and strains measured during the experiment. Fig. 47 compares experimental

and numerically predicted vertical displacements along a radial line along the center of the

plate. The yield and ultimate load levels are 6.0 kN (1.4 kip) and 9.2 kN (2.1 kip),

respectively. Experimentally measured displacements fiom the center and one intermediate

location between the supported edge and the center of the plate are plotted for comparison

with tile finite element prediction. Agreement between measured and predicted values is

excellent at load levels that cause the yield and ultimate stresses.

Fig. 48 shows the distribution of vertical deflection at ultimate load by means of a

fringe plot that is generated from finite element restllts. The vertical deflections are very

nearly symmetrical about the center of the plate. Maximum deflection at the center of the

plate is 3.5 mm (0.14 in,). Figs. 49 and 50 show distributions of numerically simulated in-

plane components of displacement. It is observed that in the central portion of the plate

[within the 50.8-ram (2.0-in.) ring] the latter displacements are orders of magnitude less

than the vertical component.
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FIG. 47. Vertical Displacement along a Radial Line at Yield and Ultimate

Stress for 50.8-mm (2.0-in) Load
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FIG. 48. Plate with 50.8-mm Ring at Ultimate Load Fringe Plot of Vertical

Displacement
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Units in in.

1 in. = 24.5 mm

FIG. 49. Plate with 50.8-mm at Ultimate Load Fringe Plot of Displacement in

the X-Direction

X

FIG. 50. Plate with 50.8-mm at Ultimate Load Fringe Plot of Displacement in

the Y-Direction
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A graph of normal strain versus distance from the center of the plate allows a

comparison of finite element and experimental results (see Fig. 51). Experimentally

determined axial strains at gage locations on the bottom surface shown in Fig. 29 are

plotted for comparison with finite element predictions (Fig. 52 illustrates FEA prediction at

the ultimate load level). The maximum normal strain does not occur at the center of the

plate. Instead, the maximum normal strain is predicted to appear on the bottom surface at a

radial distance of 11.5 mm (0.45 in.) from the center. Although this maximum strain was

located outside of the ring load when the 25.4-mm (1.0-in.) ring was used, here the

maximum occurs well inside the radius of the ring. Excellent agreement is evident at the

locations where strains are measured by transducers.

Distribution of normal strain e 1 and _ along the longitudinal (principal) axis and

transverse (secondary) direction of cross-rolling, respectively, are shown at the ultimate

load level for the same quadrant in Figs. 52 and 53. Both El and _ acquire an average

value of 2.2 x 10 -3 mm/mm at the center of the plate. A nearly symmetric pattern about the

center of the plate is observed. Although the magnitude of these strains are of the same

order, their distributions are mirror images of each other.

In-plane shearing strain, 6-6, as shown in a gray scale fringe plot (Fig. 54)

demonstrates that although this component of stress is large enough to be significant

outside and at the bounds of the loading ring [7.5 × 10 .4 mm/mm (7.5 x 10.4 in./in.)], inside

of the ring the magnitude of this strain is almost negligible. Out-of-plane shearing strains,

6"4 and cs, although not shown graphically, have substantially lower magnitudes than the in-

plane strains.

Distribution of stresses, obtained numerically, show similar trends as the strain

distributions discussed earlier for the plate loaded with the 25.4-mm (1.0-in.) ring. Fringe

plots (Figs. 55-57) illustrate the distribution of the in-plane normal and shearing stress

components o-1, o'2, and 0.6. Out-of-plane shearing stresses are negligible, as is the case for

the 25.4-mm (1.0-in.) ring load. From these plots it can be deduced that near the center of

the plate there exists a state of biaxial normal stress. The numerical model shows a biaxial

state of stress of 786.0 MPa (114 ksi) and 772.2 MPa (112 ksi) for 0-1 and 0.2, respectively,

at a radial distance of 4.5 mm (0.18 in.) from the center of the plate. At this location the

magnitude of all other stress components approach zero.

The numerical simulations indicate that for both plates an average biaxial state of

stress of 830.8 MPa (120.5 ksi), obtained by averaging the in-plane normal failure stresses

for the 25.4-mm (1.0-in.) and 50.8-mm (2.0-in.) ring loadings, is reached prior to failure of

the structure. This value of the in-plane biaxial strength is used in chapter 6 to establish the

interaction coefficients.
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FIG. 53. Plate with 50.8-mm Ring at Ultimate Load Fringe Plot of _-2 Strain

Z ×

FIG. 54. Plate with 50.8-mm Ring at Ultimate Load Fringe Plot of _-6 Strain
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FIG. 55.

Units in psi

1 psi = 6.89 kPa

Plate with 50.8-mm Ring at Ultimate Load Fringe Plot of 0-1 Stress
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FIG. 56. Plate with 50.8-ram Ring at Ultimate Load Fringe Plot of o-2 Stress
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FIG. 57. Plate with 50.8-mm Ring at Ultimate Load Fringe Plot of o-6 Stress



5. EXPERIMENTAL DETERMINATION OF PRINCIPAL

FAILURE COEFFICIENTS

5.1 INTRODUCTION

Chapter 4 presents results of laboratory experiments and complementary numerical

simulations carried out on cross-roiled beryllium sheets. Specimen geometry and loading is

arranged so that in-plane stresses dominate. An off-axis biaxial specimen places a

differential element in a state of biaxial stress even though the loading apparatus applies a

uniaxial load. A notched shear plate leads to an in-plane shear failure mechanism. Two

circular beryllium plates loaded by a circular ring, placed at the center of each plate, provide

a two-dimensional analogue to a beam loaded in pure bending.

In this chapter another set of experiments and numerical simulations is described.

The purpose of these experiments is to supplement uniaxial, biaxial, and pure shearing stress

data available from the experiments described in chapter 4 in order to obtain the principal

failure strength coefficients. These coefficients are obtained from failure tests in which

either uniaxial or biaxial stress conditions that are free of shear are imposed, or from

conditions of pure shearing stress. After some introductory discussion a series of tests

involving simple uniaxial compression, in-plane shear, through-thickness shear, and

through-thickness compression is presented. The reader is referred to Fig. 11 to understand

how these tests contribute to determination of failure coefficients required by the higher-

order macroscopic failure criterion described in chapter 3. All beryllium specimens used in

tests described in this chapter have the same chemical composition (see Table 11). In

addition, all experimental work is carried out in a controlled laboratory environment.

Both the principal and the interaction coefficients that describe the criterion are

determined from a finite number of experiments that include uniaxial, biaxial, and shear

tests. For specially orthotropic material, such as cross-rolled beryllium sheet, the minimum

number of experiments required to determine all coefficients is fit_een. A summary of tests

for an ideal case is presented in Table 12. Limitations arise, however, due to the fact that

the SR-200 material is only available in plate form. Thus, modifications of the ideal set of

experiments are needed. The experiments used for evaluation of all coefficients for thin

plate structures are listed in Table 13 (see also Figs. 11-14). Principal modifications occur

for biaxial and multiaxiai states of stress that include the through-thickness direction as one

of the stress axes. True biaxial failure parameters, such as (o"1, o-3) and (o-2, o-3), can not be

measured for thin plate structures due to geometrical limitations. A new set of experiments
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TABLE 11.

Element

(1)

Chemical Composition of Beryllium Specimens

I

Chemical Composition (weight %)

(2)

Be

BeO

Fe (ppm)

C (ppm)

A1 (ppm)

Mg (ppm)

Si (ppm)

Other Elements (ppm)

99.00

1.00

600

1,200

300

Less than 100

200

Less than 400

ppm = parts per million

TABLE 12. Experiments Required for Evaluation of Failure Coefficients

Experiment

(1)
Uniaxial:

Tension and Compression

Tension and Compression

Tension and Compression

Pure Shear:

Positive or Negative

Positive or Negative

Positive or Negative

Biaxial:

Tension-Tension, or

Compression-Compression, or

Tension-Compression

Multiaxial:

Tension or Compression

and Shear

Axis

(2)

X

Y

Z

XoZ

Y-Z

X-Y

X-Y

X-Z

Y-Z

X-Z

Y-Z

X-Y

Coefficients

(3)

FI, FI 1

F2, F22

F3, F33

F4, F44

Fs, F55

F6, F66

FI2, F112, F122

FI3, Fll3, F133

F23, F223, F233

F144, F244, F344

F155, F255, F355

F 166, F_66, F_66

Number of
Tests

(4)

2

2

2
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TABLE 13.

Experiment

(l)
Uniaxial:

Tension and Compression

Tension and Compression

Tension and Compression

Pure Shear:

Positive or Negative

Positive or Negative

Positive or Negative

Biaxiai:

Tension-Tension

Compression-Torsion

Compression-Torsion

Multiaxial:

Compression, Compression,
and Shear

Tension, Tension, and Shear

All six components

Experiments Used for Evaluation of Failure Coefficients

Axis

(2)

X

Y

Z

X-Z

Y-Z

X-Y

X-Y

X-Z

Y-Z

X-Z

Y-Z

X-Y

X-Y-Z

Coefficients

(3)

FI, FII

F2, F22

F3, F33

F4, F44

F5, F55

F6, F66

FI2, F112, F122

F244

F155

FI3, FII3, F133,

F155, F355

F23, F223, F233,

F244, F344

F166, F266

F144, F255, F366

Number of
Tests

(4)

2

2

2

is introduced that induces a triaxial state of stress, such as (Ol, o3, cr5) and (o2, o3, o4).

From these experiments both the normal and normal-shearing interaction coefficients can be

established provided that the number of tests is increased from one to, at least, three. For

the current study five specimens are used for each state of stress.

5.2 IN-PLANE COMPRESSIVE STATE OF STRESS

5.2.1 Laboratory Experiments

Compression testing is carried out using two specimens. One coupon has the

longitudinal principal material axis oriented along the loading axis; the other has the long-

transverse principal material axis coinciding with the direction of the load (Figs. 58 and 59).

Special end fixtures are machined from A-2 tool steel, hardened to Rockwell C 50/55, and

oriented to ensure that the specimen does not slip during loading (Fig. 60). In the

assembled configuration the unsupported length of the beryllium sheet specimen is 12.7 mm
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(0.5 in.). The specimenswere loadedusing a biaxial Material TestingMachine (MTS)
machinethat hasa 44.5-kN (10.0-kip) tension/compressionrangeand a +45 ° torsional

angle capacity. Only the tension/compression actuator of the MTS is used to achieve the

compressive state of stress. In-plane strain was measured using bonded Micro-

Measurement precision rosettes (CEA-06-062UR-350) in the middle of the unsupported

area of the plate. One rosette was placed on each side of the specimen directly opposite its

counterpart. This was done to ensure symmetric distribution of the load. Orientation of

these gages is shown in Figs. 58 and 59. As a check prior to actual testing, the specimens

were lightly loaded and the stress-strain curves of corresponding rosette strain gages were

compared. Both specimens were loaded at a rate of 445 N/s (100 lb/sec).

Although the primary objective of this test is to obtain compressive strength

coefficients for the longitudinal and long-transverse directions, the experiments also verify

results obtained by other investigators, as well as serve to recalculate and compare the

elastic moduli with results acquired from uniaxial tests. Stress-strain curves for specimens

loaded with the principal axis of rolling parallel and perpendicular to the load are plotted in

Figs. 61 and 62, respectively. Strains plotted are for gages oriented in the direction of the

load. Fig. 63 is similar to Figs. 61 and 62 but uses data collected from the rosette gages to

compute in-plane normal strain in a direction that is 45 ° from the loading direction. The

primary objective for use of the 45 ° gages is to show that compressive loading of the

structure is symmetric.

Table 14 summarizes the moduli and failure strength determined for each specimen.

The modulus of elasticity for compression, as calculated from Figs. 61 and 62, for

specimens 1 and 2 is 3.00 x 105 MPa (43.5 x 106 psi) and 3.06 x 105 MPa (44.3 xl06 psi),

respectively. These values compare favorably with 3.20 x 105 MPa (46.4 x 106 psi)

reported for the average in-plane compressive elastic modulus by Aldinger (Webster and

London 1979). Fig. 64 shows one of the specimens aSer failure. The FEA simulation is

described in section 5.2.2.

The longitudinal and long-transverse specimens fail catastrophically and exhibit

properties distinctive of brittle material (Fig. 64). For compression, elastic moduli obtained

from the stress-strain curves (Figs. 61 and 62) are slightly higher than moduli obtained from

uniaxial tensile tests. In each case, compressive strength is approximately 20% higher than

the tensile strength in the same direction, which is characteristic of brittle material.

Although beryllium is ductile when undergoing an in-plane tensile load, compressive

loadings manifest very different behavior. Results obtained suggest that the material

exhibits brittle properties for compressive in-plane loadings.
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FIG. 64. Failed Compression Specimen

Specimen

TABLE 14. Failure Strength for Compression Specimens

(1)

1

2

Orientation of

Principal Rolling

(2)

Parallel

Perpendicular

Elastic Modulus

GPa

(3)

300.0

306.0

(ksi)

(4)

(43,500)

(44,300)

Failure Stress

MPa (ksi)

(5) (6)

658.8 (95.6)

691.8 (100.3)

5.2.2 Numerical Simulation

Knowledge of maximum in-plane compressive strengths, o-I and o-2, is required for

estimation of the principal failure coefficients F 1 and F 11, as well as F 2 and F22 (Tsai and

Wu 1971; Wu 1974; Priddy 1974; Tennyson and Elliot 1983; Jiang and Tennyson 1989).

Numerical models are used prior to laboratory testing to aid in geometrical optimization of

the experimental specimens. This preliminary modeling minimizes manufacturing costs of

the beryllium specimens and their fixtures and gives a reasonably accurate prediction of the

distribution of the stresses throughout the part. Both two- and three-dimensional models of

a simple compression specimen are generated (Fig. 65). The final design suggests a 38.1-

mm x 12.7-mm (1.5-in. x 0.5-in.) experimental plate specimen (see Figs. 58-59). The FEA

package ABAQUS (1991a) is used for the numerical simulations.
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5.2.2.1 Plane Stress Elements

Eight hundred, eight-noded plane stress elements with approximately 16,500

degrees-of-freedom are used in a two-dimensional model of the structure. In order to

capitalize on geometry and loading conditions of symmetry only one-fourth of the actual

structure is numerically modeled. Predictions of components of strain at five integration

points are requested in the through-thickness direction. Output at the top and bottom

surfaces of the plate shown in Fig. 58 are compared with data from strain gages (see Figs.

61, 62, and 63). Material is given linear orthotropic properties with average material

properties for the through-thickness modulus, while geometric deformation is taken to be

nonlinear. Agreement of the strain gage values with FEA is good up to a load level of

approximately 400 MPa (57 ksi).

Fringe plots of simulated displacements and stresses at ultimate load for the two-

dimensional FEA model having the loading axis parallel with respect to the principal

direction of rolling are shown in Figs. 66-69 for one-fourth of the plate. The top and right

edges are lines of symmetry for the loaded plate. Figs. 66 and 67 illustrate the distribution

of displacement in the principal rolling directions (x- and y- axes, respectively). From these

figures it can be seen that in-plane transverse displacements are approximately an order of

magnitude smaller than in-plane axial quantities. A combination of the fact that beryllium

has small Poisson's ratios and a uniaxial application of the load accounts for this type of

behavior.

Although not shown by means of fringe plots, in-plane normal strains, c 1 and c2, for

the failure load are predicted to reach values of 2.03 x lO-3 and 1.7 x 10 -4, respectively,

while maximum shearing strain, c6, is at least three orders of magnitude smaller than EI.

The numerical prediction and experimental tests for c 1 yield an ultimate compressive

strength of 657.8 MPa (95.4 ksi) and 658.8 MPa (95.6 ksi), respectively, a difference of

approximately 0.15%. Figs. 68 and 69 show distribution of the in-plane normal stress in the

transverse direction and the in-plane shearing stress, respectively, at the failure load. The

former stress component attains a maximum value of 0.6 MPa (0.1 ksi) which, as is to be

expected, is two orders of magnitude smaller than the compressive strength. A fringe plot

is not shown for the ultimate compressive stress acting in the direction of the load since its

value is constant at 657.8 MPa (95.4 ksi) throughout the specimen.

5.2.2.2 Three-Dimensional Elements

Symmetry conditions are partially exploited for three-dimensional analysis. In this

case, only one-eighth of the structure is modeled with three thousand, twenty-noded,

hexahedral elements (Fig. 65). Five elements are used in the through-thickness direction.

Nodes that are located inside of the steel grip are restrained from movement in the through-

thickness direction.
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(a)

(b)

FIG. 65. Finite Element Discretization for Compression Specimens (a) Two-

Dimensional Plane Stress Elements; (b) Three-Dimensional Hexahedral

Elements
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FIG. 67. Distribution of Transverse Displacement for 2-D Compression
Model
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Model
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Results from the two- and three-dimensional analyses are in close agreement. Figs.

70-72 illustrate numerical predictions of u/, u 2, and u 3 displacements, respectively, from the

three-dimensional simulation. Physically, u 1, u 2, and u 3 correspond to components of

displacement in the directions aligned with the load, in the plane of and perpendicular to the

load, and in the through-thickness direction, respectively. The values obtained for u 1 are in

agreement with those obtained from the two-dimensional analysis. In addition, magnitudes

of u, and u 3 are significantly smaller than u 1.

Fig. 73 illustrates distribution of the axial strain, 61 , at ultimate load. Fringe

patterns in Figs. 74 through 79 illustrate distribution of each component of stress resulting

from three-dimensional simulation of the compression test. Although 0-2 and 0-6 are non-

zero they are at least two orders of magnitude smaller than 0-1 in the region between the

steel grips. With the exception of 0-1 the other components of stress can be considered to

be negligibly small.

5.2.3 Comparison of Failure Strain with Elasticity Solution

Since beryllium is considered to be an orthotropic material, a closed-form elasticity

solution for the strain components e-l, 62, and e-3 can be obtained, provided a non-complex

state of stress is applied to a geometrically simple structure. As an independent check on

the numerical simulation, components of strain at failure are predicted by an elasticity

approach assuming that the material behaves in a linearly elastic manner prior to failure

Although beryllium exhibits non-homogeneous material properties in the through-thickness

direction, i.e., the though-thickness modulus E 3 is a function of position, an average value

ofE 3 can be employed to make the solution tractable. The average value ofE 3 used for the

theoretical computation of the strain components e l, E2, and 6_ at failure is 447.5 GPa

(50.5 × 103 ksi) (Fenn et al. 1967).

The following generalized expressions relate components of stress and strain for an

orthotropic material (Lekhnitskii 1981):

] 0, t _ 031 0-

E,--_0-,-_0-" E, s

ut," l 032

_" - E_ 0-_ + --E_,0." ---E3 0.3

o, 3 1
E3 -- Ols 0.1 0-_ q- 03

1 1

cls=--_4cr_, c__j=--_50.5,

................................................................... (208)
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Model
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FIG. 72. Distribution of

Compression Model
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Specialization of these equations for the case of a uniform compressive load, -0./, in the

longitudinal direction yields the following relations:

0.1 ............................................................................................. (209)
61 --

El

0., ........ (210)
62 ---u12 E-T ...................................................................................

0.1 .......... (211)
63 -- u13 E---I-.................................................................................

Using the numerically simulated value of -0"1 at failure [658.8 MPa (95.6 ksi)] and

the material properties in Table 4, the components of strain can be determined from Eqs.

209-211. These components are shown in Table 15.

Similarly, for the case of a uniform compressive load, "0"2, in the transverse direction

Eqs. 208 become:

0"2 ........................................................................................... (212)
61 = u_l E2

6 3 ----- I.)23 --
o'2 (214)

E_

Again, using a value for "0"2 of 691.8 MPa (100.3 ksi) that is obtained from the

numerical analysis, evaluation of Eqs. 212-214 yields the results shown in Table 15.

TABLE 15. Numerical and Theoretical Comparison of Failure Strain

Components

Strain Orientation of Failure Strain

Component

c1)
el
62
£3

El

£2

e3

Principal Rolling
from Load

Parallel

Parallel

Parallel

Perpendicular

Perpendicular

Perpendicular

Numerical

knnm/mm

0.00227

0.00018

0.00005

0.00021

0.00238

0.00004

Elasticity

umm/mm

0.00223

0.00017

0.00005

0.00019

0.00232

0.00004
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5.2.4 DETERMINATION OF PRINCIPAL COEFFICIENTS F1, FI_, F_ AND F22

Experimental testing shows good correlation with numerical analysis and suggests

that the numerical model is adequate, at least for in-plane loading conditions. Principal

failure coefficients FI, F2, FII, and F22 (see Table 13) can be calculated from the following

generalized equations provided by Tsai and Wu (1971):

1 1
F,

X, X, ........................................................................................ (215)
1

F,, -X,X,"

where X i and X/' for i, j = l, 2, and 3 are tensile and compressive strengths, respectively, in

the three principal directions oforthotropy In-plane tensile strength data (Fenn et al. 1967)

and results of the compression experiment (Table 14) lead to the following coefficients:

FI = 3. 4153 xlO" MPa-t

F 1 = 3. 2762 xlO-" MPa -I

F, =2.5629 xlO -6 MPa -2

F2_ =2.5629 xlO _ MPa -_

(2. 3548 x 10-3 ksi -_)

(2.2588 x 10-3 ksi -t ) .......................................... (216)

(1.2184 x lO-_ ksi -2 )

(1.2184 xlO_ ksi -2)

5.3 IN-PLANE SHEARING STRESS

Determination of the principal coefficient F66 (Tsai and Wu 1971; Priddy 1974),

as well as interaction coefficients El66 and F266 (Tennyson and Elliot 1983; Jiang and

Tennyson 1989), requires knowledge of the in-plane shearing strength, o"6. This section

describes a special experiment that is carried out on titanium and beryllium specimens

toward this end. Numerical simulation of each test that aids in design of the specimen and

determination of the failure stresses is also presented.

5.3.1 Titanium Experiment and Simulation

As a preliminary test, a shear specimen made from a sheet of 6AI-4V titanium alloy

is numerically modeled, and then fabricated and loaded to failure. This material is chosen

because of its availability and due to the fact that it has a hexahedral-close-packed lattice

microstructure that is the same as that of beryllium. Results of numerical modeling suggest

a 114.3-mm × 25.4-mm (4.5-in. x 1.0-in.) coupon with two 45 ° slits located similar to those

shown in Fig. 80 for a beryllium specimen. However, note that the center ends of the slits

of the titanium specimen are aligned with the centerline of the specimen while those of

beryllium specimen described in section 5.3.2 are slightly offset from the centerline. After

fabrication, the titanium specimen is tested using the 44.5-kN (10.0-kip) MTS testing
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machine.Theendsof thecouponaresubjectedto tensileioadingsthat causethe centerof
the specimento predominantlyundergoa shearingstress.

A straingagealignedwith thedirectionof loadingisplacedbetweenthe endsof the
two slits at the centerof one sideof the specimen(similarto Fig. 80). The specimenis
loadedin strokecontrolat arateof 2.54mm/s(0.1 in./sec). A comparisonof experimental
straingagereadingsandnumericallysimulatedvaluesareshownin Fig. 8l(a). The strain

gage fails after the specimen is subjected to a shearing stress of approximately 600 MPa

(87 ksi). The failed titanium shear specimen is shown in Fig. 82(a). It should be noted that

the specimen fails after attaining considerable normal strain in the direction of the loading

and in a manner that suggests ductile behavior. In addition, failure takes place in such

manner that two almost identical pieces result with the separation crack linking the bulbs of

the slits.

A numerical FEA model that has isotropic material properties and includes effects of

non-linear geometry is constructed for the specimen. Material properties are provided by

the manufacturers of 6AI-4V alloy (RMI 1967). Satisfactory correlation between numerical

simulation and experimental data is determined for the shearing strength of titanium [see

Fig. 81(a)]. The shearing strength of this alloy is reported to be 759 MPa (110 ksi) (RMI

1967). Experimentally, the shearing strength of the coupon is determined to be 786 MPa

(114 ksi). This value is obtained by dividing the failure load by the cross-sectional area of

the region between the bulbs of the 45 ° slits. Output from numerical simulation suggests a

shearing strength of 764 MPa (111 ksi) which is in close agreement with both the

experimental results and the information provided by the manufacturer (RMI 1967). Both

experimental and numerical studies indicate a pure shear mode of failure for the titanium

specimen.

cL

I in. = 25.4 mm

FIG. 80. Geometry of Beryllium Shear Specimen
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(a)

i

(b)
FIG. 82. (a) Titanium and (b) Beryllium Shear Specimens after Failure
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5.3.2 Beryllium Experiment

Two experimental specimens, dimensionally identical to the one shown in Fig. 80,

are used to estimate the shearing strength of beryllium. Each specimen is loaded in the

same way and at the same rate as the titanium specimen. In addition, each specimen has the

principal rolling direction aligned with the load. A strain gage is mounted on each surface

of the plate and aligned with the loading direction. Fig. 8 l(b) shows shearing stress versus

the average normal strain at the location of the strain gage for each of the two specimens.

The shearing stress is determined by dividing the axial load by the cross-sectional area of

the region between the 45 ° slits. It should be noted that the strain gages mounted on

specimen 2 failed prematurely. Table 16 summarizes the failure strengths determined from

this experiment for titanium and beryllium. A failed beryllium specimen is shown in

Fig. 82(b).

Unlike titanium, a mixed mode of failure appears to dominate for beryllium. This is

partly attributed to the fact that the ends of the 45 ° slits of the titanium specimen are exactly

aligned with the centerline that is parallel to the direction of application of the load, while

the end slits of beryllium are slightly offset with respect to the centerline. The geometry of

the specimen and the direction of loading caused failure in a combined state of shear and

axial tension. Thus, the experiment can not be regarded as a totally successful means for

estimating shearing strength of beryllium. However, via transformation of the stress tensor

at failure, a state of pure shear can be calculated on a rotated differential element (Fig. 83).

For the two specimens this yields an average value of pure shearing stress of 322.7 MPa

(46.8 ksi). This strength is verified by another experiment recently conducted by NASA

(see section 4.3).

After careful examination of the failed specimen, the mixed mode of failure that

occurred, namely tension-shear, can be attributed partially to the fact that the through-

thickness surfaces of the slits, especially near the center of the specimen, were heavily

oxidized. Surface cracks may have formed prematurely at the sites of cavitation due to

corrosion and, thus, induced a mixed mode of failure due to pre-orientation. Moreover, the

slight offset of the ends of the slits may have contributed to this phenomenon.

TABLE 16. Failure Strength for In-Plane Shear Specimens

Specimen Number

(1)

1

2

3

Material

(2)

Titanium

Beryllium

Beryllium

MPa

(3)

786.3

322.7

345.9

Failure Stress

(ksi)

(4)

(114.0)

(46.8)

(50.2)
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[]

[] DIFFERENTIAL ELEMENT

FIG. 83. Location Differential Element for Transformation to a State of

Stress of Pure Shear

5.3.3 Numerical Simulation of Beryllium Experiment

Prior to actual fabrication and physical testing an FEA model is used to simulate the

proposed in-plane shear test. The actual specimen is a 114.3-ram × 25.4-mm x 2.54-mm

(4.5-in. x 1.0-in. x 0.1-in.) coupon with two 45 ° slits located anti-symmetrically with

respect to the x-x and y-y planes of symmetry (Fig. 80). Two- and three-dimensional

models of this specimen are generated. Fig. 84 shows the mesh used for two-dimensional

analysis for the critical region at the center of the plate structure. The 2-D model includes

orthotropic material behavior as well as non-linear geometric considerations.

Inhomogeneous orthotropic material properties and geometrical nonlinearities are

incorporated in the 3-D models.

The two-dimensional numerical model simulates the entire specimen. It has two-

thousand, eight-noded plate elements, and approximately 40,000 degrees-of-freedom.

There are five through-thickness points of integration for each of the nine integration

locations per plate element. Numerical output is requested at each of the eight nodes of

each element for the top and bottom surface. Fringe plots showing distributions of selected

components of displacement, strain, and stress at the failure load of 3.9 kN (875.0 Ib) are
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presentedin Figs. 85-92. Figs. 85 and 86 show distribution of axial and transverse

displacement,respectively. They indicate that in the critical region an anti-symmetric

patternoccursabouta line that passesthroughthe centerpointsof the roundedregionsof
the 45° lateral cuts. The samecondition of anti-symmetryis indicated for all other

componentsof strainandstressaswell (Figs.87 through92). From thesefigures,all three

componentsof strainandstressaresignificantin the regionbetweentheendsof the slots.

Maximumvaluesof 44.8i_L°a(6.5ksi),-29.0MPa(-4.2 ksi), and312.3MPa(45.3ksi) for

0-1,0-2,and 0-6, respectively, are induced in this region. A state of pure shearing stress at

the center of the plate is determined by using a simple stress transformation. This yields an

ultimate shearing strength of 314.4 MPa (45.6 ksi) that occurs on a material plane that

makes an angle of 1.1 ° with respect to the loading axis.

FIG. 84. Finite Element Mesh for Critical Region of Two-Dimensional Shear

Specimen

For the three-dimensional model, 5,400 twenty-noded hexahedral elements are used

(see Fig. 93). Due to symmetry of the load and anti-symmetry of the geometry of the

specimen, only one-fourth of the actual structure is simulated. A plane of anti-symmetry

passes through the centroid of the structure and parallel to the loaded end. In addition,

special equations are specified in the input to the FEA code so that displacement

magnitudes along this plane are antisymmetric. For example, deformation in the

longitudinal direction at the top of Fig. 94 are to the right in the middle of the specimen,

while those at the bottom are to the left. The overall structure is symmetric about a plane
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passing through the center of its thickness direction• Five elements are used to simulate

one-half of the thickness of the plate as a consequence of this symmetry. Figs. 94-98 show'

fringe plots of selected components of displacement, strain, and stress at the top surface at

failure load. Results obtained suggest a different stress distribution as compared to the two-

dimensional results (Figs. 84-92). This is mainly due to differences in geometry of the bulb

ends of the slits as well as the material variation in the through-thickness direction. Stresses

C_l, _2, and G6 acquire values of 313.7 MPa (45.5 ksi), -68.9 MPa (-10.0 ksi), and 255.1

MPa (37.0 ksi), respectively, in the critical region between the two ends of the slits. Out-

of-plane quantities are negligible by comparison. A condition of pure shearing stress can be

achieved by means of a stress transformation at the centroid of the specimen. The

magnitude of this stress is 296.5 MPa (43.0 ksi) which occurs at an angle of 11.3 ° with

respect to the direction of the load.

The shearing stress obtained experimentally at failure shows good correlation with

numerical analysis. This suggests that the model utilized for numerical simulation is

adequate for the type of analysis performed.

Units in in.

1 in. = 24.5 mm

FIG. 85. Distribution of Longitudinal Displacement for 2-D Beryllium Shear

Specimen
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Units in in. -000415

1 in. = 24.5 turn -000491

-. 101313566

FIG. 86. Distribution of Transverse Displacement for 2-D Beryllium Shear

Specimen

FIG. 87. Distribution of Longitudinal Strain for 2-D Beryllium Shear

Specimen
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FIG. 88.
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Units in psi

1 psi = 6.89 kPa

FIG. 90. Distribution of Longitudinal Normal Stress for 2-D Beryllium Shear
Specimen

Units in psi
1 psi = 6.89 kPa

FIG. 91. Distribution of In-Plane Shearing Stress for 2-D Beryllium Shear
Specimen
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Units in psi

1 psi -- 6.89 kPa
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FIG. 92. Distribution of Transverse Normal Stress for 2-D Beryllium Shear

Specimen

FIG. 93. Finite Element Model of Three-Dimensional Shear Specimen
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Units in in.

1 in. = 24.5 mm

FIG. 94. Distribution of Longitudinal Displacement for 3-D

Specimen

!

Z-- X

FIG. 95. Distribution of Axial Strain for 3-D Beryllium Shear Specimen
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Z-----X

FIG. 96. Distribution of In-Plane Shearing Strain for 3-D Beryllium Shear

Specimen
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FIG. 97. Distribution of Axial Stress for 3-D Beryllium Shear Specimen
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Z---×

Units in ksi
1 ksi = 6.89 MPa

FIG. 98. Distribution of In-Plane Shearing Stress for 3-D Beryllium Shear

Specimen

5.3.4 Determination of Principal Coefficients F 6 and F66

The principal failure coefficient 1:66 for beryllium (see Table 3) can be calculated

from Eq. 35. The governing equations for determination of the failure strength coefficients

are as follows:

1 1
/_ ....

r r' . ......................................................................................... (217)
1

F66 TT'

where T and T' are positive and negative in-plane shearing strengths. However, since the

material is treated as an orthotropic continuum and positive and negative shearing strengths

are assumed to be identical:

T=T'

F 6 --0 .............................................................................................. (218)

1

F66--T

Substituting T = 322.7 MPa (46.8 ksi) into Eq. 218 gives the following coefficient:
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F66 =9.604x10 -6 MPa -2 (4.566 xlO-4ksi -2) ............................................ (219)

If the in-plane shearing strength of 303.4 MPa (44.0 ksi) reported by NASA is used instead

(see section 43), the F66 coefficient becomes:

F66 =1.0866 xlO -5 MPa -2 (5.1653xlO-_ksi -2) .......................................... (220)

The difference in the two coefficients is approximately 21 percent. For development

of the proposed criterion the latter coeffÉcient, NASA's, is used. This decision is based on

the fact that the coefficient that results from NASA's tests is more conservative, ie., it

causes the failure surface of the proposed criterion for beryllium to occupy less volume In

addition, results obtained from the experiment that produced the former coefficient

(Papados and Roschke 1991) are not as reliable due to surface flaws on the specimen.

5.4 THROUGH-THICKNESS SHEAR

5.4.1 Experiments

Determination of the failure coefficients F44 and F55 (see Eq. 35 and Table 13)

requires knowledge of the through-thickness shearing stresses o-4 and o-5, respectively, at

failure. This section describes how these coefficients are obtained experimentally by means

of a double shear test.

A schematic of the beryllium plate and clamping steel fixtures used in i.he laboratory

are shown in Figs. 99 and 100. Geometrical dimensions of the beryllium coupons are

identical with those used for the compression test discussed in section 5.2 (cf. Figs. 58 and

59). The specimens are again specially oriented: one has the principal direction of cross

rolling parallel to the long dimension of the coupon, and the other has the secondary

direction of cross rolling parallel to the long direction of the coupon (see Fig. 99). A

special fixture that was designed for testing of beryllium plates (Mascorro et al. 1991) is

used to secure each specimen. An area that is 12.7 mm x 25.4 mm (0.5 in. x 1.0 in.) at

each end of the coupon is clamped. Load is applied in the through-thickness direction.

This is accomplished with a 25.4-mm x 12.7-mm x 50.8-mm (l.0-in. x 0.5-in. x 2.0-in.) A-

2 steel puncher that is hardened to the maximum practical permissible limit of 60/62 on the

Rockwell C scale. A schematic of the experimental arrangement appears in Fig. 100.

An 8.9-kN (20.0-kip) uniaxial MTS testing machine is used for testing each

through-thickness shear specimen. All specimens are loaded in displacement (stroke)

control at a rate of 4.2 x 10-2 mm/s (0.1 in./min). The time required for each specimen to

fail is less than one minute. Data acquisition includes applied load, time, and strain gage

output.
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FIG. 100. Setup for Through-Thickness Shearing Stress Test
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Two specimens per orientation of the material are used for establishing the out-of-

plane shearing strengths of cross-rolled beryllium sheet. Due to satisfactory agreement in

the results additional specimens are not tested. A strain gage is mounted at the center of the

bottom surface in the longitudinal direction for each specimen. Gages in both test

configurations indicated little strain, which shows that no appreciable bending stresses are

developed during loading. Figs. 101 and 102 display through-thickness shearing stress

versus axial and transverse strain (aligned with and perpendicular to the principal rolling

directions), respectively, from transducers mounted on the bottom surface of one of the

specimens for each material orientation. The through-thickness shearing strength for each

specimen is obtained by dividing the failure load by twice the cross-sectional area of the

coupon (RMI 1967). It should be noted that this method is not considered to be accurate.

These strengths are in close agreement with the numerical output from Table 17.

Top and side views of the failed specimens for both configurations are shown in

Figs. 103 through 105. Figs. 103 and 105 show one of the specimens after failure that has

the primary rolling direction aligned with the supporting edge. An example of the opposite

orientation is shown in Figs. 104 and 106. For each case, a major crack develops near the

supporting edge and propagates through the thickness (Figs. 103 and 104). Secondary

cracks can be seen in close proximity as well. This is due to the fact that the edge of the

plate is not completely clamped. Therefore, numerical simulation predicts that a

combination of axial, shear, and normal through-thickness stresses (see Figs. 109-111), are

present in the vicinity of the supported edge. During the experiment it is noted that a single

crack initiates at the top one-fourth of the plate in the through-thickness direction at a

location approximately 12.7 mm (0.5 in.) from the long side edge of the plate. The crack

forms at an early stage of loading (linear elastic). Prior to failure similar cracks are

observed at the bottom one-fourth of the plate in the same direction. The "middle" portion

of the plate does not show any indication of damage. From Figs. 105 and 106 it can be

seen, especially when the principal axis of cross rolling is aligned with the long dimension of

the specimen, that although the material develops a central crack it also exhibits material

integrity through the middle one-third of the thickness dimension. This suggests a more

ductile or "soft" behavior of cross-rolled beryllium sheet within approximately its middle

one-third compared to the top and bottom thirds. Variation of material modulus in the

through-thickness direction is discussed in more detail and verified experimentally in

section 7.3.
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TABLE 17.

Specimen Number

(1)

Average

Specimen Number

(1)

1

2

Average

o-4

Failure Strength for Out-of-Plane

Failure Stress from Experimental Data

O',

(2)

552.3

565.7

559.5

(ksi)

(3)

(80.1)
(81.1)

(80.6)

M_a

(4)

589.5

595.7

592.6

(ksi)

(5)

(85.5)
(86.4)

(86.17

Failure Stress from Numerical Simulation

MPa

(2)

526.8

515.7

521.3

or4

(ksi)

(3)

(76.4)

(74.8)

(75.6)

SPa

(4)

585.4

588.1

586.8

o3

(ksi)

(5)

(84.9)
(85.3)

(85.1)

FIG. 103. Top View of Through-Thickness Shear Specimen 1 after Failure
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FIG. 104. Top View of Through-Thickness Shear Specimen 2 after Failure

FIG. 105. Side View of Through-Thickness Shear Specimen 1 after Failure
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FIG. 106. Side View of Through-Thickness Shear Specimen 2 after Failure

FIG. 107. Distribution

Thickness Shearing Test
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FIG. 110. Distribution of
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FIG. 111. Distribution of Short
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5.4.2 Numerical Simulation

Three-dimensional numerical models are constructed to aid in design of the

experimental specimen and to determine the distribution of stresses at the failure load.

During preliminary simulation, the major goal is to optimize the physical dimensions of the

coupon. After testing, simulation is intended to predict displacement, strain, and stress

distributions induced during the experiment. A model with three thousand twenty-noded

isoparametric hexahedral elements is used. Ten elements that simulate the through-

thickness dimension allow for a variation of the through-thickness modulus as described in

chapter 7. Originally, only one-fourth of the structure was modeled using a less refined

finite element model that did not take into consideration variations of the through-thickness

material properties. Although results obtained were satisfactory it was decided to modify

the model to incorporate material variations in the short transverse direction. This is also

consistent with all previous three-dimensional numerical models for beryllium.

Through-thickness shearing strengths, o-4 and °'5, are in close agreement with the

experimental results (Table 17). The experimental (average) values of strength are

compared with the numerical values obtained at a distance of 1.27 mm (0.05 in.) from the

top (or bottom) surface of the plate and at a distance of 12.7 mm (0.50 in.) from the edge of

the specimen.

Another improvement over the original numerical model is also introduced for the

final simulation. Initially, the loading was imposed by means of a uniform out-of-plane

stress distribution on the top surface of the specimen, i.e., load was applied in the negative

z-direction. The results obtained were not within an acceptable level of agreement with the

experimental data. Differences between experimental and numerical values for strain and

through-thickness shearing stress were approximately 15%.

In the refined model a contact load is applied instead of a uniform load distribution.

In other words, the body that applies the load is considered to be a rigid body. The

deformable part of the assembly is restricted to the unconstrained portion of the beryllium

sheet. General interface elements are used between the rigid body and the top surface of

the beryllium plate that is in contact with it to ensure compatibility of displacements

(ABAQUS 1991b). Experimental and numerical results from this analysis are in good

agreement. Typical displacement, strain, and stress distributions from numerical simulation

of the o"4 experiment are shown in Figs. 107 through 111. Fig. 107 shows that most of the

unsupported beryllium structure experiences a uniform displacement of 6.9 x 10-3 mm (2.7

× 10 -4 in.) in the direction of the load. Moreover, as shown by Figs. 108-111, insignificant

shearing strain and stresses are experienced by the center portion of the free part of the

beryllium plate. This is in agreement with the experimental results.
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5.4.3 Determination of Failure Coefficients F44 and 1755

Experimentally determined values of the out-of-plane failure shearing stresses, o-4

and o-5, are presented in Table 17. The average of these values are used to compute the

principal failure strength coefficients, F44 and F55, by means of Eq. 35. This simple

calculation leads to the following coefficients:

F, =3.5023 xlO -6 MPa -2 (1.6649 xlO-4ksi -2) .......................................... (221)

Fj5 =2.1950 xlO -6 MPa -2 (1.3857 xlO-"ksi -2) ......................................... (222)

Note that both F 4 and F 5 are equal to zero (see Eqs. 35 and 58) since beryllium is treated as

an orthotropic material.

5.5 THROUGH-THICKNESS COMPRESSION STATE OF STRESS

An important but difficult parameter to measure is the through-thickness

compression strength of beryllium. Like the in-plane compression strengths, the through-

thickness strength is needed to calculate both principal (F 3 and 1;'33) and interaction (F13 ,

F23, F133, F233, Fll 3, F223, F344, F355, and F366) failure coefficients. The physical

limitation of the material geometry, i.e., the fact that it is only available in thin plate form,

makes it difficult to test in the through-thickness direction, especially in tension. A tensile

test has been reported by Lockheed (Fenn et al. 1967). Results and accuracy of this test

have been discussed earlier (see section 5). A test to obtain the compressive strength for

cross-rolled beryllium in the through-thickness direction has not been reported in the

literature. This section describes a novel experiment devised to determine the failure

strength in compression.

5.5.1 Experiments

A special series of tests has been carried out to compute the through-thickness

compressive strength of cross-rolled beryllium. The experimental arrangement is shown in

Fig. 112. Two right circular steel cylinders that have a diameter of 50.8 mm (2.0 in.) are

used to load the specimen. Each is 76.3-mm (3.0-in.) long, made of A-2 tool steel and

hardened to 58-60 on the Rockwell "C" hardness scale. The beryllium specimens, a 12.7-

mm (0.5-in.) diameter disk and a 12.7-mm (0.5-in.) square plate are sandwiched between

the two cylinders Dimensions of the plate specimens are based on the ultimate capacity of

the MTS machine. Top and bottom surfaces of the specimen are perpendicular to the line

of the applied load which is provided by a 2.2 x 106-N (5.0 x 105-1b) MTS machine.
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FIG. 112. Experimental Setup for Through-Thickness Compression Test

The experiment is carried out in displacement (stroke) control. The rate of motion

of the top cross-head of the MTS machine is maintained at 4.2 x 10.2 mm/s (0.1 in./min).

Prior to the actual experiment, compliance of the machine and the experimental assembly

(except for the beryllium structure) is measured. This is done in such a manner that the true

displacement of the beryllium specimen at failure can be obtained. Sensitivity of the MTS

machine allows for reading displacement to within 3.9 x 10 .6 mm (1.0 × 10 .4 in.).

Initially, 12.7-ram x 12.7-mm (0.5-in. x 0.5-in.) square cross-rolled beryllium

coupons were used for this experiment. It was observed, however, that due to stress

concentrations at the edges, failure initiated at one or more of the four comers of the plate.

To bypass this obstacle and to achieve a rather uniform stress distribution that is relatively

free of stress concentrations, it was decided to test circular disks instead of square coupons.

Results obtained from the square specimens were lower than the failure strength of the

material obtained using circular disk specimens.

Due to geometrical limitations of the specimens no strain gages are attached. Load

and deformation information is gathered for two specimens. Normal compressive stress in

through-through direction is obtained by dividing the force of the MTS with the original,
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undeformed surface area of the disk. Results of each compressive test and an average

failure stress are shown in Table 18. Fig. ll3 relates normal stress to through-thickness

deformation for the entire range of loading. The through-thickness compressive strength is,

approximately, two and one-half times larger than the in-plane compressive strength and

three times larger than the in-plane tensile strength.

A magnified photograph one of the failed beryllium disks is shown in Fig. 114. Only

a single, through-thickness crack develops prior to failure. Although the specimen is loaded

in a smooth, continuous manner, it breaks suddenly and without warning. No strain

hardening is observed. This is in contrast to the behavior exhibited during the in-plane

compression tests (see section 5.2). During the compression tests non-linear behavior is

observed, although the material fails catastrophically.

TABLE 18. Failure Strength for Through-Thickness Compression
Specimens

Specimen Number

(1)
1

2

Average

Failur, Stress

MPa

(2)
1,718.2

1,729.9

1,724.0

(ksi)

(3)
(249.2)

(250.9)

(250.0)

1750

1500

1250

_1000

d 75O

5OO

25O

0

0.00

o Circular Specimen 1 o o o _ W
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FIG. 113. Stress versus Deformation for Through-Thickness Compression
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FIG. 114. Magnified Photograph of Failed Through-Thickness Compression

Specimen

5.5.2 Numerical Simulation

Physical testing is numerically simulated using both two- and three-dimensional FEA

models. For the two-dimensional model, five-hundred eight-noded isoparametric plane

strain elements are used. Ten elements simulate behavior in the through-thickness direction.

Non-linear geometry and inhomogeneous properties of the material are incorporated into

the model. Figs. 115-117 show stress distributions for the through-thickness analysis. The

load used is a prorated portion of the average of the experimentally obtained failure loads.

As in the case of the through-thickness shear tests discussed earlier (section 5.4), this

experiment is simulated with contact loading at the interfaces between the beryllium disk

and the steel cylinders.

The three-dimensional model also considers inhomogeneous material properties and

geometric nonlinearities. It consists of eight-hundred twenty-node hexahedral elements.

Again, the plate is simulated using ten elements in the through-thickness direction.

Symmetry of the structure is taken into consideration and, thus, only one-eighth of the plate

is modeled. Results obtained are similar to those obtained from the two-dimensional model.
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Finally, this problem is also simulated using axisymmetric elements. The axis of

symmetry is the le_ vertical edge of Fig. 116. The beryllium plate consists of two-thousand

finite elements. Two-hundred elements are used to simulate the cylinders. The advantage

of using axisymmetric elements is that the amount of computational time is considerably

decreased.

All three numerical simulations yield comparable results as far as the distribution of

the normal through-thickness stress is concerned. An essentially uniform distribution of this

stress is obtained throughout the disk for all three numerical simulations. Numerical and

experimental results for stress at the center of the plate versus vertical stroke of the MTS

machine are compared in Fig. 113. Agreement between FEM and the experimental data is

within acceptable levels.

5.5.3 Determination of Failure Coefficients F 3 and F33

Failure coefficients F 3 and F33 are determined using Eq. 35 and the average of the

strengths listed in Table 18. An elementary calculation gives the following numerical values

for the failure coefficients:

Fj =8.71 xlO -_ MPa -1

Fj3 =8.41 xlO -r MPa -2

(6.01 xlO-J ksi -') ................................................. (223)

(1.38 xlO-_ksi -2) ................................................ (224)

Units in ksi
1 ksi = 6.89 MPa

FIG. 115. Distribution of Through-Thickness Compressive Stress from 2-D

Simulation
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6. EXPERIMENTAL DETERMINATION OF INTERACTION

FAILURE COEFFICIENTS

6.1 INTRODUCTION

A distinct feature of the new proposed criterion is that the failure surface is

described by a relatively large number of interaction coefficients. As a consequence the

number of experiments required to evaluate the coefficients increases considerably. For the

case of cross-rolled beryllium sheet, which is treated as a specially orthotropic, three-

dimensional material in this study, the number of necessary interaction coefficients is

eighteen (Table 13). Of the eighteen coefficients, nine are due to interactions among

normal stresses aligned with the direction of the material axes while the other nine are from

interactions among sheafing and normal stresses.

According to the new criterion, establishment of the interaction coefficients is

divided into two parts: (1) determine the normal interaction coefficients subject to all

constraints imposed by asymptotic equations from experiments involving only normal stress

distributions, such as Eqs. 68-73, and (2) determine the shear-normal interaction

coefficients from experiments that involve both shearing and normal stresses. A functional

is established for each case. Minimization of these functionals yields two independent sets

of simultaneous equations. The solution of each set of equations yields the interaction

coefficients.

6.2 MULTIAXlAL STATE OF STRESS: o-1, 0"3, AND orS

The fact that cross-rolled beryllium sheets are available only in thin plate form

complicates the task of setting up experiments for establishing the coefficients. For this

study, the procedure outlined in the previous paragraph is modified because it is virtually

impossible to design a biaxial test with one of the loading axes normal to the plane of the

material. As an alternative, a combined state of stress that includes both normal and

shearing stresses that act in the plane of the normal stresses is proposed. This stress state is

achieved by rotating one of the in-plane material axes with respect to the other two axes

from the test described in section 5.5 (see Appendix VII). Five of these tests are carried out

for each orientation of in-plane material axes. Results of the tests and complementary

numerical simulations are described in sections 6.2.1 and 6.2.2, respectively.
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6.2.1 Laboratory Experiments

Small, round beryllium disks that have a diameter of 12.7 mm (0.5 in.) are used for a

set of experiments that cause failure under a combined state of stress. These specimens are

identical with those used in the normal through-thickness compression test described in

section 5.5. Directions of principal and secondary rolling are marked on each specimen by

the manufacturer. To ensure correct orientation each specimen is examined through a low

power microscope.

The experimental set-up consists of a series of A-2 tool steel rods that are cut at

angles of 30 °, 35 °, 37 °, 40 °, and 45 ° with respect to the horizontal axis (see Fig. 118). Each

rod is hardened to 60/62 on the Rockwell "C" scale. The original length the rod is 152.4

mm (6.0 in.). The beryllium specimen is centered with the load axis and placed parallel to

the cut surfaces of the steel holders. All three parts (two holders and the beryllium disk) are

enclosed in a 6.4-mm (0.25-in.) thick cylindrical steel collar. The collar itself is cut

lengthwise (parallel to the loading direction). Its main purpose is to provide containment of

the apparatus. Care is taken to avoid development of any reactional forces between the

collar and the cylinders. The collar is confined in place by a steel 254.0-mm × 254.0-mm

(10.0-in. × 10.0-in.) plate situated circumferentially at the center of the collar which, in turn,

is supported by two 254.0-mm x 254.0-mm x 127.0-mm (10.0-in. × 10.0-in. × 5.0-in) steel

blocks. The whole arrangement rests on a horizontal platform that is the lower crosshead

of a 2.2 × 106-N (5.0 x 105-1b) MTS compression testing machine. Each specimen is

loaded in stroke control at a rate of 0.09 mm/s (0.04 in./min). The direction of loading is

aligned with the z-direction of the Cartesian coordinate axes (see Fig. 118).

30" Setup 35" Setup

5o8 ---1 r'-- 5o8

9! 9 ! 9
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× X

Note: All units are in mm

37" Setup

r-

5.

q.

40" Setup

s o _\1 -_"

45 " Setup

508----

I

!

£

FIG. 118. Experimental Fixtures for Combined Normal and Shearing Stress
Tests
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Initially, each specimen is positioned between the cylinders such that the material

axes are aligned with the three mutually perpendicular Cartesian coordinate axes (special

orthotropic orientation). For this set of experiments the secondary direction of cross-rolling

remains in alignment with the y-axis, while the principal rolling and the through-thickness

directions are rotated through an angle equal to the cut angle of the holders, i.e., 30 °, 35 °,

37 °, 40 °, and 45 °, respectively. Two specimens are tested for each holder configuration, for

a total of ten specimens.

Collective results for failure stresses of all five experimental arrangements discussed

in this section are shown in Table 19. Failure stresses computed from a simplified stress

transformation are compared with those from FEA simulation. FEA stresses are taken from

a point at the center of the beryllium disk. Initially, the normal stress acting on the steel

loader in the direction of the Cartesian z-axis (Fig. 118) is computed by dividing the applied

force with the cross-sectional area of the cylinder normal to the same axis. A uniform stress

distribution is assumed to be acting on the projection of the beryllium disk in the direction

of the applied load and in the vicinity of the specimen. The magnitude of this stress is

calculated by dividing the load at failure by the projected area of the beryllium disk in the

direction of the z-axis. Magnitudes of the component of failure stress at the center of the

beryllium specimens are determined via a simple stress transformation with respect to the

material axes (see section 6.4.1 and Appendix VII). Agreement between the simplified

analysis and FEA is well within acceptable bounds. The maximum diff'erence in predicted

stress is 1.0%. In addition, Fig. il9 provides a synoptic output of load versus vertical

displacement for the 30 °, 35 °, 37 °, 40 ° , and 45 ° degree configurations. The 30 ° and 35 °

specimens exhibit a linear behavior prior to failure while the 37 °, 40 °, and 45 ° specimens

show signs of non-linear behavior. This phenomenon is attributed to two possible causes:

(a) through-thickness interlayer planes slip with respect to each other due to an increase of

the shearing stress, and (b) non-uniform initial load application due to misalignment of the

components of the experimental setup. Fig. 120 shows a histogram of the maximum

compressive load corresponding to the total vertical deflection for each of the ten

specimens.

All disk specimens failed suddenly, which is characteristic of brittle behavior. In

addition, no definite yield point can be established for any of these test configurations. This

leads to the assumption that the material behaves in an almost linearly elastic manner prior

to failure. Careful examination of the failed specimens reveals that the 30 ° and 35 °

specimens exhibit a failure behavior similar to that of the through-thickness compression

specimen, i.e., they form a single crack before failure. The 37 ° specimens show more than

one crack in the through-thickness direction (Fig. 121); each crack is similar to those of the
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30 ° specimens. Cracks observed in the 40 ° specimens are indicative of a mixed mode

failure: shear and compression. A major inclined crack at an angle of, approximately, 45 °

occurs in the through-thickness direction. In addition, two perpendicular cracks, each

penetrating approximately one-third of the through-thickness dimension, extend from each

flat face of the specimen and intersect the major inclined crack (Fig. 122). For the 45 °

specimens the cracks in the through-thickness direction exhibit similar behavior to that of

the 40 ° specimen. The number of cracks increases and new ones form at an angle of

approximately -45 ° with respect to the major inclined crack. The latter propagate through

the top and bottom one-third of the specimen in the through-thickness direction (Fig. 123).

TABLE 19. Failure Strengths for Disk Specimens with o-1, 0-3, and os State
of Stress

Specimen

Angle of Number
Inclination

(1) (2)

30 ° 1

2

35 ° 1

2

37 ° 1

2

40 ° 1

2

45 ° 1
2

Specimen

30 °

35 °

37 °

40 °

45 °

MPa

(3)

-529.4

-53 I. 1

-711.6

-720.9

-805.0

-815.2

-934.4

-937.3

-1,190.4

-1,199.2

Failure Stress from Simplified Analysis

cr3

0csi)
(4)

(-76.8)

(-77.0)

(-103.2)

(-104.6)

(-116.8)
(-118.2)

(-135.5)

(-135.9)

(-172.7)

(-173.9)

M_a

(5)

-1,588.I

-1,593.3

- 1,451.4

-1,470.3

-1,417.7

-1,435.6

-1,327.0

-1,331.2

-1,190.4

-1,199.2

(ksi)

(6)

(-230.3)

(-231. l)

(-210.5)

(-213.2)

(-205.6)

(-208.2)

(-192.5)

(-193.1)

(-172.7)

(-173.9)

MPa

(7)

916.9

919.9

1,016.3

1,029.5

1,068.3

1,081.8

1,113.5

1,117.0

1,190.4

1,199.2

cr5

-528.8

-530.2

-710.9

-719.8

-807.4

-817.8

-937.7

-940.5

-1,174.2

-1,181.1

(-76.7)

(-76.9)

(-103.1)

(-104.4)

(-ll7.1)

(-118.6)

(-136.0)

(-136.4)

(-170.1)

(-171.3)

Failure Stress from FEA Simulation

(-230.0)

(-230.8)

(-210.1)

(-212.8)

(-205.9)

(-2o8.5)

(-193.0)

(-193.6)

(-171.2)

(-172.3)

920.5

923.2

1,015.6

1,030.1

1,066.0

1,079.1

1,114.2

1,117.7

1,192.8

1,201.1

(ksi)

(8)

(133.0)

(133.4)

(147.4)

(149.3)

(155.0)
(156.9)

(161.5)

(162.0)

(172.7)

(173.9)

-1,588.1

-1,591.4

-1,448.6

-1,467.3

-1,419.7

-1,437.6

-1,330.7

.-1,334.9

-1,180.4

-1,188.0

(133.5)

(133.9)

(147.3)

(149.4)

(154.6)

(156.5)

(161.6)

(162.1)

(173.0)

(174.2)
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FIG. 121. Magnified Photograph of Failed Specimen that is Inclined 37 °

FIG. 122. Magnified Photograph of Failed Specimen that is Inclined 40 °
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FIG. 123. Magnified Photograph of Failed Specimen that is Inclined 45 °

6.2.2 Numerical Simulation

Several FEA models are used to simulate each test.

models are constructed that are comprised of eight-noded,

Initially, two-dimensional

plane-strain isoparametric

elements. Steel components are modeled as isotropic high-strength material that are

physically connected to the beryllium disk. The results from these simulations do not agree

well with the experimental output.

Subsequently, each experiment is simulated as a contact problem. Hertzian rigid

surfaces are used for the non-beryllium components. The beryllium disk is simulated using

either eight-noded, plane-strain elements for two-dimensional analysis or twenty-noded,

solid, isoparametric finite elements for three-dimensional analysis. Each beryllium disk has

two material axes that are rotated with respect to the third axis (see Fig. 118). Each three-

dimensional model takes advantage of symmetry of the overall arrangement with respect to

a plane passing through the x-z Cartesian axes. Thus, only one-half of the structure is

discretized. The through-thickness dimension of the beryllium disk is approximated using

ten elements for both the two- and three-dimensional simulations.

Selected output from two- and three-dimensional numerical simulation of various

stress components at failure are shown in Figs. 124-127 for a 30 ° specimen rotated about an

axis parallel with the secondary direction of rolling. Distribution of stress in the middle of
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the 30 ° specimen compares well with the transformed experimental values presented in

Table 19. It should be noted, however, that regions of stress concentration occur in the

vicinity of the intersection of the flat and cylindrical surfaces of the specimens. FEA results

are presented in Table 19 for comparison with results obtained from simple stress

transformation.

The two- and three-dimensional simulations yield almost identical results. Thus, for

simplicity, time, and computational savings all remaining beryllium disks are analyzed using

two-dimensional simulation. Distributions of selected stress components are shown in Figs.

128 through 131. Patterns of stress distribution similar to those found for the 30 ° specimen

appear in all inclined specimens. Moreover, the middle portion of each beryllium specimen

exhibits a state of stress similar to that shown in Table 19.

Units in ksi

1 ksi = 6.89 MPa

-21S.

-217.

-218.

-228.

-221.

-224.

--_,

--_ZT.

--230.

-234.

-235.

-237.

--2"-_,

FIG. 124. Distribution of Through-Thickness Normal Stress from 2-D

Simulation for 30 ° Specimen
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FIG. 125. Distribution of

Simulation for 30 ° Specimen

X
\, .tv'_

Units i_ ksi

1 ksi = 6.89 MPa

Through-Thickness Normal Stress from 3-D

Units ha ksi

1 ksi = 6.89 MPa

FIG. 126. Distribution of In-Plane Normal Stress from 2-D Simulation for 30 °

Specimen
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Units in ksi

I ksi = 6.89 MPa

138.

137'.

134.

132.

132.

131.

128.

128.

127,

1213.

126.

125.

FIG. 127.

Specimen

Distribution of Shearing Stress from 2-D Simulation for 30 °

Units in ksi

I ksi = 6.89 MPa

- 1.94.

-186.

-197'.

-188.

-:_1.

--2_4.

-ZlO.

-211..

-213.

-215.

-217.

-218.

FIG. 128. Distribution of Through-Thickness Normal Stress from 2-D

Simulation for 35 = Specimen
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FIG. 129. Distribution of Through-Thickness Normal Stress from 2-D

Simulation for 37 ° Specimen

-179.

-181.

-183.

-185.

-187.

-188.

-181.

Unitsm ksi -z_.

I ksi = 6_9_%IPa -185.

-197.
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FIG. 130. Distribution of Through-Thickness Normal Stress from 2-D

Simulation for 40 ° Specimen
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FIG. 131. Distribution of Through-Thickness

Simulation for 45* Specimen

Units in ksi
1 ksi = 6.89 MPa

Normal Stress from 2-D

6.3 MULTIAXlAL STATE OF STRESS: 0-2, 0-3, AND 0-4

6.3.1 Laboratory Experiments

Beryllium specimens that are identical in size to those used for the experiments

described in the previous section and have a diameter of 12.7 mm (0.5 in.) are used for a

similar set of compression-shear experiments. The directions of principal and secondary

rolling are provided by the manufacturer. Once again, the rolling orientations of all

specimens are verified through a low power microscope.

The experimental set-up is exactly the same as before except that the principal

direction of cross-rolling is aligned with the y-axis (see Fig. 118). The secondary rolling

and through-thickness directions are rotated clockwise about the y-axis through an angle

equal to the cut angle of the holders, i.e., 30 °, 35 °, 37 °, 40 °, and 45 °, respectively. The 2.2

x 106-N (5.0 x 105-1b) MTS compression testing machine is used to apply load. Two

specimens are tested for each holder configuration for a total often disks. Each specimen is

loaded in stroke control at a rate of 0.09 mm/s (0.04 in./min). The direction of loading

coincides with the z-direction of the Cartesian coordinate axes (Fig. 118). No strain gages
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or other transducers are attached to the specimens. Compliance of the test setup without a

beryllium disk was determined (see section 5.5) so that deformation of the disk itself can be

measured by subtracting the compliance from the stroke reading of the MTS machine.

Results for failure stress for all five experimental arrangements discussed in this

section are shown in Table 20. These are obtained via the same transformation of stress

from the loading to the material axes (Fig. ll8) as described in section 6.2. A uniform

stress distribution is assumed to be acting on the projection of the beryllium disk in the

direction of the applied load and in the vicinity of the specimen. The magnitude of this

stress is given by dividing the load at failure by the projected area of the beryllium disk.

Magnitudes of the component of failure stress at the center of the beryllium specimens are

determined via a simple stress transformation with respect to the material axes (see section

6.4.1 and Appendix VII). Good agreement is observed between the simplified analysis and

FEA for the stress components at failure. The maximum difference in predicted stress

components is approximately 3.5%. The histogram shown in Fig. 132 provides a synoptic

output of the experimental results for the 30 °, 35 °, 37 ° , 40 °, and 45 ° configurations. It

displays the maximum compressive load and maximum vertical deflection for each

specimen.

Each disk specimen fails suddenly which is characteristic of brittle behavior with no

definite yield point. No ductile behavior and strain hardening effects are observed.

Examination of the failed specimens reveals that the 30 ° and 35 ° orientations exhibit a

failure behavior similar to that of the through-thickness compression specimen (see section

6.2.1): they form a single crack before failure. The 37 ° specimens show formation of more

than one crack but each crack is similar to those of the 30 ° specimens. A mixed mode of

failure, shear and compression, is observed for the 40 ° specimens. Cracks in the through-

thickness direction for the 45 ° specimens exhibit similar behavior to that of the 40 °

specimen. The failed specimens exhibit similar distribution of crack formation as those

shown in Figs. 12 l- 123.

6.3.2 Numerical Simulation

Alignment of material properties for the two- and three-dimensional numerical

models discussed in the previous section are changed to account for the differences in the

material orientation of these specimens. Good agreement is observed between simplified

transformed and numerical stresses at failure. No fringe plots are shown for these

simulations. Omission of these figures is done to avoid repetitive presentation of results,

since the patterns observed from these simulations are similar to those presented for the 0-1,

0-3, and 0-5 simulations.
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TABLE 20. Failure Strengths of Disk Specimens with o-2,o-3,and cr4 State of
Stress

Specimen

Angle of Number
Inclination

(i)

30°

35 °

37 °

40 °

45 °

Specimen

30 °

35 °

37 °

40 °

45 °

(2)

1

2

1

2

1

2

1

2

1

2

MPa

(3)

-449.5

-500.4

-659.6

-662.0

-741.5

-746.5

-873.4

-874.9

- 1,076.3

-1,076.6

Failure

(ksi)

(4)

(-72.5)

(-72.6)

(-95.7)

(-96.0)

(-107.5)

(-108.3)

(-126.7)

(-126.9)

(- 156.1)

(-156.2)

Stress from Simplified"Analvsis

03

mPa

(5)

-1,498.5

-1,501.2

-1,345.4

-l,350,1

-1,305.7

-1,314.7

-1,240.5

-1,242.6

- 1,076.3

-1,076.6

Failure Stress from

(ksi)

(6)

(-217.3)

(-217.7)

(-195.1)

(-195.8)

(-189.4)

(-190.7)

(-179.9)

(-180.2)

(-156,1)

(-156.2)

FEA Simulation

MPa

(7)

865.2

866.7

942.1

945,4

983.9

990.7

1,040.9

1,042.6

1,076.3

1,076.6

-515.1

-516.4

-664.0

-666.1

-745.4

-750.9

-878.4

-879.8

- 1,078.4

-1,079.8

(-74.7)

(-74.9)

(-96.3)

(-96.6)

(-108.1)

(-1o8.9)

(-127.4)

(-127.6)

(-156.4)

(-156.6)

-1,550.0

-1,552.8

-1,354.2

-1,358.3

-1,308.7

-1,324.5

-1,246.6

-1,248.7

-1,081.1

-1,081.8

(-224.8)

(-225.2)

(-196.4)

(-197,0)

(-189.8)

(-192.1)

(-180.8)

(-181.1)

(-156.8)

(-156.9)

865.2

866.7

942.1

945,4

983.9

990.7

1,040.9

1,042.6

1,081.8

1,082,5

_5

(ksi)

(8)

(125.5)

(125.7)

(136.6)

(137,1)

(142.7)

(143.7)

(151.o)
(151.2)

O56.1)

(156.2)

(130.1)

(13o.3)

(137.3)

(137,8)

(142.9)

(144.o)

(151.8)

(151.9)

(156.9)

(157.0)

6.4 EVALUATION OF INTERACTION COEFFICIENTS

The two sets of experimental values of components of failure stress obtained from

the inclined beryllium disks are listed in Tables 19 and 20. The triaxial state of stress (two

normal and a shearing stress component) allows for the calculation of ten interaction

coefficients, namely, FI3, Fll 3, F133, F155, and F355 from the first set (Table 19) and F23,

[;'223, 1;;'233, F244, and F344 from the second set (Table 20). The stress transformation from

the loading to the material axes and the scheme used for establishing these coefficients are

found in sections 6.4.1-6.4.3 and Appendix VIII.
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6.4.1 Theoretical Considerations

The general transformation of stress with respect to any orthogonal coordinate axes

is given by the following tensorial relation (Sokolnikoff 1964):

% = a_ a 0akl ......................................................................................... (225)

where aki and a/j. are direction cosines for a second-order tensor transformation.

A matrix form that is equivalent to Eq. 225 is as follows:

[o-M] = [R] r fall [R] ................................................................... (226)

where [R] is a matrix of direction cosines relating the coordinate and material axes, [o-M] is

the transformed stress tensor, and [o-L] is the original stress tensor. As an example,

consider the 0"1, o-3, and o"5 test described in section 6.2.1 with a 30 ° angle of inclination. In

this case [o"L] and [R] are as follows:

°°°o]= o o , JR]=
0 O-o".

0._66 0 0.500"0 0

[-0.500 0 0.866

............................ (227)

Substituting the [o"L] and [R] matrices into Eq. 226 leads to the following stress

tensor:
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-0.250 0 0._33]0 0 .......................................................... (228)

0.433 0 0.750J

It can be seen that this experimental arrangement provides the following combined

state of stress:

crj =-0.250cr,, cr3 =--0.750cr x crs =0.433cr x ............................................. (229)

For this state of stress the generalized form of the failure surface given by Eq. 61 becomes:

F_crt + F_o 3 + F_:r, 2 + F.o'/ + Fsso" / + 2F, otcr 3 + 3Fi,3crt2o._

+3Fmo'loj 2 + 3Fmo'jo'5 _ + 3Fmo-3cr52 =1
............................ (230)

Coefficients F 1, F3, FII, F33, and £'44 are known from chapter 5 Rearranging Eq 230 so

that the unknown coefficients are gathered on the left hand side, leads to the following

equation:

2F.o',cr, + 3Fmcr,2o'._ + 3Fmo',cr3 _ + 3Fmcr, o', 2 + 3Fmcrjcr ,'

=1 -(F_o'_ +Fjo'_ +F_cr, 2 +Fj._o's 2 +Fs_crs 2) ............................. (231)

6.4.2 Determination of F13, FI13, FI33, F155, and F355

Since five sets of experimental output (see Table 19) are available for each

orientation of the disk, least squares can be employed to evaluate the failure coefficients

F13, FI13, F133, F155, and F355 (see Appendix VII). These coefficients are required to

meet the two conditions discussed in section 3 Usually, all conditions are satisfied and

closure, convexity, and non-singularity are achieved. In some cases, however, these

conditions are not met and the same step-by-step procedures described in section 3.1 (or

section 3.2 if hydrostatic failure is considered) need to be employed.

The failure coefficients obtained in the case of cross-rolled beryllium sheet are as

follows:

F_3=4.48xlO-eMPa -2 (2.13xlO-4ksi-Q .............................................. (232)

FH3 =1.81 x lO-g MPa -2 (5.92 xlO -r ksi-') ............................................. (233)

F,j =1.96 ..'clO-gMPa -' (6.41 xlO-rksi -'_) ............................................. (234)

Fm=-1.29x10-'MPa-' (-4.21x10-"ksJ-') ........................................... (235)

F_,s =3.30 xlO-'4MPa (1.08 xlO-"ksi -3) ............................................. (236)
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6.4.3 Interaction Coefficients F2j, 17223, F2s 3, F244, and Fs_,

In a similar fashion, results from experimental strength tests with the secondary

rolling direction oriented in the direction of the inclined plane (Table 20) may be employed

to obtain the failure coefficients F23, F223, F233, F244, and F344. Following the steps

described in section 6.4.1 leads to the following specialized form of the failure criterion:

F2cr2 + F3cr.+ F22cr22+ F._o.2 + F,4o,_ 2 + 2F_3o'2cr, 4-3Fe23o'Jo",
........................... (237)

+3F2.o-2o-J +3F2.o-_ _ +3F_.:_,_J = 1

Subsequently, Eq. 237 is modified by collecting terms that include unknown coefficients

The new equation is as follows:

2 F23cy2o'3 ../.-3F2330"220"3 -/- 3 F2330"2Gr32 -/.-3F244020"42 -t-3F3440"30"42

=l-(Fecr 2 +F3cr, +Fe:r / +F.cr/ +F44cr_2) ............................(238)

Applicationof a standardleastsquares technique(Devore 1987) to the fivesetsof

testdatalistedinTable 20 leadsto the followingcoefficients:

F2, =2.29xlO-6Mea -2 (l.09xlO4ksi -2) ............................................... (239)

F22j=l.55xlO-gMPa -J (5.08xlO-7ksi -_) ............................................... (240)

F_.=l.OSxlO-'Mpa -' (3.53xlO-r_i -') ............................................... (241)

F2,,=-2.81xlO-WMPa -3 (-9 22xlO  i -') ............................................. (242)

F_ =2.04xlO-'°Mpa -_ (6.70xlO-_ksi -') ............................................... (243)

The ten interaction coefficients determined in sections 6.4.2 and 6.4.3 yield failure

surfaces that do not meet all necessary conditions outlined in section 31 Thus,

implementation of constraining equations is necessary These calculations are described in

detail in chapter 8.

6.4.4 Determination of F12, 17112, 17122, F166, and F266, and 17144, 17255, and

F366

Data from tests that apply in-plane tension, compression, and a combined state of

stress (provided by the 45 ° off-axis specimen described in section 4.2.2) contribute to

determination of the F12, Fll 2, F122, F166, and F266 failure coefficients. The format
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outlinedin section3 is followed. From the first condition,normal interactioncoefficients

FI2, Fll 2, and FI22 are computed from a standard least-squares scheme (Devore 1987).

The second condition defines a functional which, in turn, yields a system of nonlinear

equations. The solution of this system of equations determines the remaining two failure

coefficients: FI66 and F266. This is accomplished via the mathematical package

MACSYMA (MIT Publications 1982). The normal interaction coefficients are:

(-6.11×104 ksi 4) ........................................... (244)FI2 = -1.29 x lO 4 MPa -2

Fll 2 = --6.90 x lO-l° MPa 4

F122 --- -2.18 x lO -I° MPa

The normal-shear interaction coefficients are:

F_66---9.64xlO-Z°Mpa -' (-3.16xlO-Tksi -')

(-2.26 xlO -rksi-')........................................... (245)

(-7.14 x 10 -_ ksi- 0 ........................................... (246)

F266 = -9.64 x lO-Z° MPa-J

FI. _ = --8.91 x lO -lo MPa

F2ss = -9.82 x lO -11MPa

F_. =0

(247)
(-3.16 xlO-rksi-')..........................................

Data from tests on three different specimens that apply a combination of all six

components of stress (see Fig. 14) via double (in-plane and out-of-plane) rotations each at

45 ° are used to calculate the normal-shear interaction coefficients F144, F255, and F366. It

should be noted that these coefficients are the only unknown parameters at this point.

Thus, a least-squres scheme is used to provide the best fit values for 14"144, Fes 5, and F366.

These are as follows:

(2.92xlO-rksi-')

( -3.22 x 10 -_ ksi -3 ) .............................................. (248)

Details concerning the formulation and extraction of these coefficients are given in

Appendix VII.

6.5 STATE OF STRESS WITH IN-PLANE COMPRESSION AND OUT-OF-PLANE SHEAR

6.5.1 Experimental Investigation

Cross-rolled beryllium coupons that are rectangular in shape are used to induce a

combined state of in-plane compression and out-of-plane shearing stress. The geometry of

the specimens themselves is identical to those used for the compression test in section 5.2

(see Figs. 58 and 59). Loading is achieved with the aid ofa 89.0-kN (20-kip) and 113.0-N-
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m (1000-(in.-Ib))capacitybiaxialmachine(tension/compression-torsion)manufacturedby
MaterialTestingSystem(MTS).

Two different specimenorientationsare considered:one has the direction of

compressiveloadingparallelwith the principalmaterialaxis (principalaxisof rolling) and

the other hasits directionof compressiveloadingperpendicularto the principalmaterial

axis. Two specimensaretestedfor eachorientation(atotal of four plates). Eachspecimen

hastwo, typeFCA, 1.0-mm(3.8 x 10.2 in.) rosettegages(00-90° arrangement), one at the

center of each side. The specimens are loaded by the same fixtures used for the in-plane

compression test (Fig. 60). For each plate 9.53 mm (0.38 in.) of each end is secured into

the fixtures. This permits a clear span length of 19.05 mm (0.75 in.) that is subjected to the

combined compression and shearing loading. Each specimen is loaded in torsion at a twist

rate of 0.19°/s. In each case, the beryllium specimen is compressed in the axial direction to

275.8 MPa (40.0 ksi) which is well within the linear elastic range of the material. The

compressive stress is maintained throughout the experiment. Subsequently, the specimens

are loaded in torsion to failure. It is assumed that the middle portion of the plate between

the fixtures is acted upon by uniform compressive stress and torsional moment.

A summary of the test results is presented in Table 21. The compressive stress at

failure is computed by dividing the axial force by the cross-sectional area of each specimen.

Calculations for the torsional shearing stress at failure are described in section 6.5.2. Fig.

133 shows one of the specimens atter failure. The specimens did not fail suddenly.

However, examination of the failed specimen indicates development of brittle surfaces. A

typical graph of torsional moment versus angle of twist is shown in Fig. 134. It can be seen

that the material's ultimate torsional capacity occurs at yield which can be recognized after

an angle of twist of approximately 3°. Beyond yield the specimens are still intact although

major cracks appear throughout the middle one-third of the plate. This is due to the

compressive stress that allows the material to achieve considerable torsional twist and

concomitantly to maintain the torsional moment capacity at yield as well. It should be

noted, however, that after yield the torsional moment is slightly reduced and then a modest

hardening effect is observed. The material slips continuously after it yields.

6.5.2 Theoretical Considerations

It is assumed that the compression-torsion specimen acquires its maximum strength

capacity while being loaded within the elastic range. In this case the state of stress imposed

on the specimen can be resolved into two components: in-plane compression and out-of-

plane shear. Moreover, the effect of each component is treated independently.

Superposition of results yields the overall effect of the combined stresses. Since section



153

5.2.3 discusses theoretical studies for compressive components of stress, the focus of this

section is limited to determination of the shearing stress.

TABLE 21.

Specimen

Orientation

(1)
Parallel

Parallel

Perpendicular

Perpendicular

Failure Strength for Compression-Torsion Specimens

Compression Torsional Shear

MPa

(2)
275.8

275.8

275.8

275.8

(ksi)

(3)
(40.0)

(40.0)

(40.0)

(40.0)

]VIPa

(4)

368.2

368.9

285.4

286.8

t_4

(ksi)

(5)
(53.4)

(53.5)

(41.4)

(41.6)

MPa

(6)

279.2

279.9

376.4

377.8

(ksi)

(7)
(40.5)

(40.6)

(54.6)

(54.8)

FIG. 133. Failed Compression-Torsion Specimen

Fig. 135 shows graphs of torsional moment versus normal strain measured along the

principal and secondary directions of cross-rolling for the first specimen that is tested in

each orientation. Strain gages are referenced using a capital letter and a number: the letter

accounts for the alignment of the gage with respect to the material axis (A = parallel to

longitudinal axis; B = perpendicular to longitudinal axis); the number refers to the specimen

number (two specimens were tested per orientation).
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FIG. 134. Torsional Moment versus Angle of Twist

Consider a long homogeneous orthotropic bar of rectangular section with sides of

length a and b. The orthotropic directions are parallel to the coordinate axes as shown in

Fig. 136. The principal shear moduli associated with sides a and b are G 1 and G 2,

respectively. A torsional moment, M t, is applied to the bar. Assuming small deformations

and rotations the differential equation governing this problem is as follows (Lekhnitskii

1981):

J g _ 8hG_ _-, 1 m:cx

+ _¢--_2= - .,._1._ sin_. ........................................................ (249)g-_- .... _ a

where W is a stress function that vanishes at all four sides of the cross-section (x = 0, a and

y = 0, +_b/2), g is Gz/Gz, and 0 is the angle of twist. The general solution of Eq. 249 is

(Leldmitskii 1981):

mnx 0= Y.(y)sin .................................................................................... (25)
a

Y,, -- A,, cosh _mrc'u Y +B,.sinh_y ÷--ma'/_8 0G_a 2 ................................................ (251)
a a m3n _
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where p --,fg, and A m and B m are constants determined from the boundary conditions at y

= __+b/2. The solution assumes that the bar obeys Hooke's law. Thus, the stress function

becomes:

88G_a 2 _ mnx

_= _ ,,=J.3.. [1 a_A_coshmTr/a2c)'/sin--a

................................................ (252)

where c is the ratio a/b.

M t Torsional Moment

C Compression

FIG. 136. Free Body Diagram of Compression-Torsion Specimen

The six stress components that are applied to the rectangular beryllium bar in section

6.5.1 are as follows (Lekhnitskii 1981):

0_ and d_ ............................................ (253)0._=0.2=0.3 =0._ =0, 0._=--:-, 0._-
0),

Therefore, with the aid of Eq. 252 stresses 0-4 and 0-5 can be rewritten as follows:

(

8 61G/a 2 ,,,___j_ 1 |
._-3[1

sinh m 7r/.ty _ m nx
a__A_Isin-- . .............................................. (254)

cosh __c_ ) a
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D

(
80Gl a2 '_ ] /

cosh m Jr/.ff

a [cos mz°c ............................................... (255)

cosh _cP ) a

To simplify these two equations, the following four additional parameters are

defined:

¢ ¢

d =-_ --_- ........................................................................................... (256)

fl_32d 2 _°___ l___x1 ( 2dtanhmX ")__)............................................................. (257)
re=l,3.., x,

I_ 1
__ 8d _ ((-1)-_ tanhmlr] ............................................................... (258)

n; fl.,__z_l,_.[ m 2 2d )

= 1 ---_- m 2m=tA... ¢osh m_
2d

................................................................ (259)

The torsional rigidity C, twist, and maximum shearing stresses are determined by the

formulae (Lekhnitskii 1981):

C = G2abJfl ............................................................................................ (260)

d=Mt= Mt .................................................................................... (261)
C G2ab3fl

_- Mttc------__ (262)
MAXcr _ ab 3 .....................................................................................

MAXcrz = Mt _'.........._2..................................................................................... (263)
ab 21z

For an orthotropic material the locations of maximum shearing stress correspond to the

middle of either the longer or of the shorter side, depending on d Application of Eqs. 260

through 263 to the beryllium specimens is carried out by means of a computer program

written in the C language that appears in Appendix IX. The results are shown in Table 21.

Equations 260-263 only take into consideration the torsional state of stress for the

experiment described in section 6.5.1. Assuming the specimen is within its elastic range the

compressive stress is added to the torsional shearing stresses by superposition.
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6.5.3 Interaction Coefficients F15 s and F244

Two interaction failure coefficients can be obtained from this experimental set-up.

Using Eq. 66 and the uniform compression, and also assuming that the only components of

stress at failure are obtained from an out-of-plane shearing force, the following specialized

equation is derived:

F_cr_ + F, cvz2 + Fsscys 2 + 3 Fmcr_cys 2 -/ .......................................................... (264)

This form assumes that the principal material axis is aligned with the direction of application

of the compressive stress. Solving for FI55, the only unknown in the above equation, gives

1-( F_cvj + Fl_a_ 2 + Fs,_, 2)
F,. ................................................................. (265)

3 a_ 0"52

Similarly, for the case in which the direction of the principal material axis is

perpendicular to the application of compressive stress, the governing strength equation is:

f 2o" 2 -/-F22o'22 -t- f _,_o',e2 "t"3 F2¢,lcy2o'42 =1 ......................................................... (266)

Solving for F244:

+p,::
F244 = 30-,o',' ............................................................... (267)

Direct substitution of the experimental strengths reported in Table 21 into Eqs. 265

and 267 yields the following coefficients:

Fm =-9.4O xlO-gMPa -_ (-3.09 x10-6ksi -_) ........................................... (268)

F2.=-9.63 x10-gMPa -3 (-3.16 xlO-aksi -_) ........................................... (269)

It should be noted that the above values of F155 and F244 are dramatically different

from those obtained in sections 6.4.2 and 6.4.3.



7. NON-DESTRUCTIVE EVALUATION TESTS

7.1 INTRODUCTION

Two types of non-destructive evaluation tests are used to evaluate or verify strength

and other material parameters for cross-rolled beryllium sheet: (a) hardness, and (b)

ultrasonic techniques. The hardness test is used to determine tensile strength of beryllium in

the three orthogonal material directions and compare with results obtained from destructive

tests (see section 6). The ultrasonic test supplies an estimate of the modulus of elasticity in

the through-thickness direction. The main advantage of these techniques is that they are

easy to use and save time. However, they may not provide the accuracy needed to properly

evaluate material characteristics.

7.2 HARDNESS TEST

Hardness tests are used primarily as a basis for comparison of materials, especially

with regard to specifications for manufacturing and heat treatment, quality control, and

correlation with other properties and behavior (Davis et al. 1982). The physics of hardness

is not yet fully understood, although the general concept, which has to do with solidity and

firmness of matter, is easily comprehended. Hence, there is not a unique definition of

hardness. Some arbitrary definitions associated with hardness are based mainly on the

nature of the tests. For example, some tests measure resistance to permanent indentation

under static or dynamic loading, energy absorption under impact loads, resistance to

scraping, resistance to abrasion, resistance to cutting or drilling, etc. These definitions have

developed with the necessity for expressing quantitative performance requirements under

different conditions of service.

The concept that hardness is resistance to indentation or penetration of a surface

forms the basis for a number of commercially available instruments. A variety of hardness

tests has been devised. The most commonly used, however, are the Rockwell and Brinell

tests (Asceland 1989; Davis et al. 1982). The Rockwell test is used in this study. Its

principle of operation includes exerting a static load on an indenter which, in turn, deforms

the specimen. The hardness measured is parallel to the direction of movement of the

indenter. The measured hardness number is a function of the degree of indentation of the

test specimen.
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The operationand specificproceduresfor the Rockwell hardnesstestshavebeen
standardizedby ASTM (ASTM E 18). Someessentialprovisionsas outlined by the
standardsinclude:

(1) Thetest surfaceshouldbeflat andfreefrom scale,oxide film, pits, andforeign

materialthat mayaffect the results. A pitted surfacecanyield erratic readingsowing to
someindentationbeingnearthe edgeof a depressionwhichresultsin freeflowing of metal

around the indenter and, consequently,a low reading. Avoiding oiled surfaces is
recommendedsincesucha condition reduces friction under the indenter and results in a

lower hardness reading.

(2) The bottom surface should be free from scale, dirt, or other foreign material that

may crush or flow under the test pressure, thus, affecting the outcome.

(3) The thickness of the piece tested should be such that no bulge or other marking

appears on the surface opposite the indenter. For hard material, such as cross-rolled

beryllium sheet, the thickness may be as little as 0.25 mm (0.01 in.). Charts are available in

ASTM E 18 for selecting proper scales for use with thin sheets.

(4) All hardness tests should be performed on a single thickness of the material

under consideration. Stacking of two or more pieces of the same material to provide

adequate thickness does not yield the same result as for a solid piece of the composite

thickness due to relative movement between the various pieces.

(5) The hardness number of a curved surface determined using the Rockwell

hardness test is likely in error because of the shape of the surface. A small area should be

flattened prior to performing the test. For certain size specimens corrections can be made

for curvature (see ASTM E 18).

The Rockwell hardness tester applies load via weights and levers. The indenter is

either a steel ball or a braille (a diamond cone). The hardness number is read from a

graduated dial indicator and, subsequently, converted into tensile strength with the aid of

charts provided by the vendor. Fig. 137 shows such a device.

Initially, the Rockwell tester is calibrated with the use of special test blocks provided

by the manufacturer. Prior to use with beryllium, the tester is calibrated for both the

Rockwell "B" and "C" scales. The "B" scale uses a 1.5-mm (0.16-in.) diameter steel ball for

a penetrator. A minor load mass of 10 kg (22.1 lb) and a major load mass of 100 kg

(221.0 lb) is used for testing medium hard to very hard metals such as beryllium. The

calibration yields an error of _+0.5 hardness numbers. This is well within the acceptable

limits set by the ASTM E 18 standard of +_2.0. The Rockwell "C °' scale, which uses the

diamond braille, a minor load mass of 10 kg (22.1 lb), and a major load mass of 150 kg
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(331.0lb) is usedto test very hard metals. Calibration for this scale is also acceptable since

an error of _+0.8 hardness numbers is obtained.

Initially, a 12.7-mm x 12.7-mm × 2.54-mm (0.5-in. x 0.5-in. × 0.1-in.) cross-rolled

beryllium specimen is used in conjunction with a Rockwell hardness machine to determine

tensile strength in the three orthogonal directions of the material. A second specimen, a

12.7-mm (0.5-in.) diameter disk that is 2.54-mm (0.1-in.) thick, is used only for through-

thickness hardness evaluation tests.

FIG. 137. Hardness Testing Machine

Figs. 138 and 139 show magnified pictures of indentations produced by the

penetrator for the through-thickness and longitudinal directions, respectively. Indentations

similar to those shown in the longitudinal direction are also observed in the transverse

direction, although they are not shown. For all three directions, the Rockwell "B" scale is

used. Testing of the square specimen in the longitudinal and transverse directions of
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principalrollingyieldsresultsverycloseto those obtained from uniaxial tensile testing in the

corresponding direction. Average tensile strengths of 518.2 MPa (75.2 ksi) and 547.4 MPa

(79.4 ksi) are computed for the principal and secondary in-plane material axes, respectively.

These values compare well with the experimentally determined strengths shown in Table 5.

FIG. 138. Indentations from Through-Thickness Hardness Test

FIG. 139. Hardness Test Indentations in SR-200 Beryllium Used to

Determine _1
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Potentially significant results are obtained when the square and disk specimens are

tested for hardness in the through-thickness direction. The Rockwell "B" scale is employed

for most tests, although the Rockwell "C" scale is also used. This is due to the fact that the

indications of the former scale fall in the upper part of the range of the scale and validation

of the results is achieved by employing the latter scale. Results from the Rockwell "C" test

fall in the lower end of the range and are consistent with the hardness outcomes reported by

the Rockwell "B" scale. Data obtained from both the square and disk specimens indicate an

average through-thickness tensile strength of 765.3 MPa (111.0 ksi) in this direction which

is 3.8 times as large as the one reported by Lockheed (Fenn et al. 1967).

Based on lack of agreement of the hardness tests results with those reported by

Lockheed, a third specimen similar to the first one (square in plan view) is tested. The

results obtained are consistent with tests on the two previous specimens. Tensile strengths

obtained using the Rockwell "B" scale for the square and disk specimens are reported in

Table 22 for all three principal directions of orthotropy.

Although, hardness tests are not regarded as totally reliable, they do provide a good

indication of the material's tensile strength behavior in the direction under consideration. A

large discrepancy exists between the tensile strength of SR-200 beryllium sheet in the

through-thickness direction reported by Lockheed and results from the hardness test. The

more conservative of the two values, which is the tensile strength reported by Lockheed, is

used for determination of the principal coefficients F 3 and F33 (see section 5).

7.3 ULTRASONIC TEST

7.3.1 Background

A relatively simple and rapid way to establish material modulus in the through-

thickness direction is to use an ultrasonic technique. Here, this method is applied to cross-

rolled beryllium sheets. In order to verify whether or not the material exhibits significant

variation of elastic properties in the through-thickness direction, five reduced-thickness

disks are tested ultrasonically. The thickness of the disks varies from 2.54 mm (0.1 in.) to

0.60 mm (0.02 in.) in increments of 0.60 mm (0.02 in.). The thinnest specimen is obtained

from the middle of a 2.54-mm (0.1-in.) disk by a chemical etching technique performed by

the material supplier (Electrofusion Corp.). Each successively thicker disk is obtained by

etching less material from a 2.54-mm (0.1-in.) disk. It is assumed that the chemical process

does not affect the material properties.
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TABLE 22.

Axes

$1ecimen

Shape Orientation

(1) (2)

Square Longitudinal
l

2

3

4

5

Average
Transverse

1

2

3

4

5

Average
Short Transverse

1

2

3

Average

Disk Short Transverse

1

2

3

Average

Tensile Strengths from Hardness Testing for Principal Material

Rockwell "B"

Dial Reading

(3)

80.8

81.0

81.0

82.0

82,0

81.4

82.0

82.5

82.5

83,0

83.0

82.6

99.0

99.0

99.0

99.0

98.0

98.0

99.5

98.5

Equivalent Tensile Strength

M_a

(4)

508.8

510.2

510.2

530.9

530,9

518.2

530.9

544.7

544.7

558,5

558.5

547.4

772.2

772.2

772,2

772.2

758.4

758.4

686.0

765.3

(ksi)

(5)

(73.8)

(74.0)

(74.0)

(77.0)

(77,0)

(75.2)

(77.0)

(79.0)

(79.0)

(81.o)

(81.0)

(79.4)

(112.0)

(112.0)

O12.0)

(112.0)

(110.0)

(110.0)

013.o)

(111.0)

Normal incidence pulse-echo and through-transmission techniques are employed for

• each specimen (Bray and Stanley 1989). A schematic of the experimental setup is shown in

Fig. 140. Piezoelectric sources of variable frequencies of excitation are used. Two

conditions are necessary for the success of the test: knowledge of the distance of travel of

the pulse and absence of internal flaws. Time required for the excitation wave to either

travel through the material or be reflected is measured from the wave pattern that is shown

on an oscilloscope. Results obtained from the two methods are consistent with each other.
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FIG. 140. Experimental Setup for Ultrasonic Testing

The average elastic modulus and Poisson's ratio for each specimen can be calculated

using the following equations:

E. = pc 2 2 2 ...........................................................................(270)
C I -- C 2

(Cl 2 -- 2C2 2)

/a. 2(c, 2 _c2_ ) .................................................................................... (271)

where E a is the modulus in the through-thickness direction; Pa is the average of the

Poisson's ratios; c I is the velocity of the longitudinal wave; c2 is the velocity of the shear

wave; and p is the density of the material (Bray and Stanley 1986). It should be emphasized

that these estimates are average quantities of the modulus and Poisson's ratios for the entire

specimen subjected to ultrasonic testing.

Overall goal of these tests is to obtain a distribution of these parameters from a

series of sections with variable thickness. As described earlier, these sections are centered

about the neutral plane of the plate.

7.3.2. Determination of Elastic Constants for Each Layer

For this study five sections of SR-200 beryllium are tested using an NDE technique.

Each section is symmetric about the middle plane as shown in Fig. 141. Section 1 has a

thickness of 0.51 mm (0.02 in.) while section 5 has a thickness of 2.54 mm (0.10 in.).

Intermediate sections, 2, 3, and 4 increase by 0.51 mm (0.02 in.) in thickness. Sections 2, 3,
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4, and5 are considered to be composed of 4, 6, 8, and 10 different layers, respectively, that

are 0.25 mm (0.01 in.) thick (see Fig. 141).

Layer

5

4

3

2

1
4.

I

2

3

4

5

Middle Plane

L 0.27 mm (0.01 in,) typical

2 4

i

5

FIG. 141. Location and Dimension of Through-Thickness Layers

The goal of this sequence of experiments is to obtain the through-thickness moduli,

E 3, and Poisson's ratios, v13 and v23 , for each of the ten layers. It is assumed that all other

material properties are known. In addition, average E3, v_3 , and v23 values for each section

can be established indirectly from the average of three NDE tests per section by using Eqs.

270 and 271. Results of these calculations are shown in Table 23.

Specimen

TABLE 23.

Thickness

(mm)

(2)
0.508

1.016

1.524

2.032

2.540

Elastic Constants for Specimens from NDE Measurements

(1)

Cl a c2 a Layers

(m/s) (m/s)

(3) (4) (5)

12,774 8,574 1

12,774 8,574 1,2

12,947 8,731 1,2,3

13,389 9,070 1,2,3,4

13,855 9,429 1,2,3,4,5

aAvera_e of three measurements

GPa

(6)
296.5

296.5

305.5

327.5

351.0

Material Properties

E3 v13

(ksi)

(7) (8)
(43,000) 0.089

(43,000) 0.089

(44,300) 0.085

(47,000) 0.083

(51,000) 0.081

v23

(9)

0.091

0.091

0.086

0.085

0.083

Different schemes, such as the average and equivalent through-thickness modulus

rule of mixtures, can be employed for calculating E3, v13 , and v23 for each layer, depending

on the orientation of the layers of material (Asceland 1989). These models suggest
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representationof the through-thicknessand in-planemoduli in terms of equivalentspring
stiffnesses.Limitationsarise,however,especiallyfor the calculationof Poisson'sratios, if

coupling betweenthe equivalentsprings is employed. This gives rise to a systemof

indeterminateequations. Thus, for a solution to be obtainedadditionalassumptionsare

imposed,suchasrequiringthatthetotal in-planestrainof the materialis equalto the mean

in-planestrainof all layerscomprisingthemedium.

7.3.3. Numerical Simulation

In order to avoid these simplifying assumptions, evaluation of the through-thickness

modulus and Poisson's ratios for each layer are obtained using numerical simulation. The

method described in what follows is based on a recursive procedure that allows for the

determination of E 3, v13, and v23, of each layer. That is, once the elastic properties of ith

layer are known, the properties of the i+l th layer can be determined.

For section 1, which is comprised of two layers having the same elastic properties,

constants E 3, v'_3, and v23 are determined from experimental measurements of the wave

velocities, c I and c 2, and Eqs. 270 and 271. Velocity measurements for section 2, which

has four layers and two different sets of material properties, are used to determine an

estimate of E3, v13, and v23 for the overall section by employing Eqs. 270 and 271.

Consider a small section taken from a thin plate that extends infinitely far in all

directions from the point in question. In the event that a uniform stress in the through-

thickness direction is applied to the top surface of section 2, and provided that the layers 1

and 2 are not physically connected, then the deformation experienced by the two sets of

layers is similar to that shown in Fig. 142. Only one-eighth of the arrangement is shown,

i.e., planes x-y, y-z, and x-z are planes of symmetry.

If the material is made up of the same two sets of layers but this time there is a

physical connection or bonding between them (Fig. 143), then for a load situation similar to

that of Fig. 142 the deformed structure is analogous to what is shown in Fig. 144. Planes 1,

2, and 3 are planes of symmetry and, thus, only one-eighth of the structure is shown. In

addition, it is assumed that the body deforms in such a manner that the normal

displacements in the two in-plane orthogonal directions of layer 1 are the same as those of

layer 2.
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Material properties are known for the inner layer, but not for the topmost layer. To

establish E 3, v13 , and v23 for the top layer a numerical model is constructed. For the first

analysis both layers are given the overall material properties of the entire section as

determined from Eqs. 270 and 271 and listed in Table 23. The Poisson's ratios v31 and v32

are assumed to be identical. A uniform load is applied as shown in Fig. 142 that induces

linear elastic displacements, strains, and stresses. The deformation in each of the two in-

plane directions is kept the same for both layers via multi-point constraining (MPC)

equations. Magnitudes of displacements in the three mutually perpendicular directions are

noted.

The second stage for the solution of the unknown material properties involves a trial

and error process with multiple analyses. A series of simple FEA simulations is carried out

in order to establish E 3, v13 , and v23 of the top layer. The numerical model used is

geometrically identical to the model used with the composite section (Fig. 143). The

material properties E 3, v13 , and v23, however, of each layer are different. The bottom layer

is given the material properties established experimentally or from a previous series of

analyses. The top layer is, initially, given the material properties of the entire section from

Table 23. Displacements in the three orthogonal directions that result from the FEA
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analysis are noted. In the event that these displacements do not match the components of

displacement obtained from the composite model, the elastic constants E3, v13 , and 1/23 are

adjusted by a factor. The magnitude of this factor is determined from the ratio of the

displacement of the overall section to that of the independent layer simulation. The same

adjustment procedure is repeated for the uppermost layer until the assigned material

coefficients yield displacement components that are identical to those of the overall section

in the first analysis.

Once material properties are known for all layers in a given section, the next thicker

section is considered in a similar manner. That is, the properties of the outermost layer are

determined by a numerical trial and error procedure that results in deformations in the three

orthogonal directions that are the same as those resulting from the average properties

determined by the NDE tests. By repetition of this procedure E3, Vl3, and v23 are

determined for all remaining layers. Approximately 20 simple analyses are required for each

section. Table 24 lists the material properties for each layer of cross-rolled beryllium sheet.

Fig. 145 shows graphical distribution ofE 3 obtained from the numerical simulation. Only

the properties of five of these layers are shown since symmetry about the middle plane is

assumed. The results show a significant variation of the through-thickness modulus, E 3.

The outermost layer has an E 3 which is 180% larger than the corresponding E 3 of the

innermost layer. The Poisson's ratios of the outer layers, on the other hand, decrease by as

much as 18% compared to the Poisson's ratios of the inner layers.

TABLE 24.

Layer

(1)
1

2

3

4

5

Elastic Constants for Layers from NDE Measurements

Thickness

mm

(2)
0.254

0.254

0.254

0.254

0.254

(in.)

(3)
(O.OLO)
(O.OLO)
(0.010)
(O.OLO)
(O.OLO)

GPa

(4)
296.5

296.5

325.9

396.4

533.7

Material Properties

E3

(ksi)

(5)
(43,000)

(43,000)

(47,100)

(57,500)

(77,400)

Vl 3 v'23

(6) (7)
0.089 0.091

0.089 0.091

0.077 0.077

0.075 0.077

0.076 0.077
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8. FAILURE SURFACES FOR SR-200 BERYLLIUM SHEET

STRUCTURES

8.1 CLOSURE AND CONVEXITY OF FAILURE SURFACES

The new criterion for failure prediction described in chapter 3 requires that both

conditions of closure and convexity are met. This chapter describes the process used to

check and modify the coefficients of the failure criterion so that the failure surface satisfies

these conditions for SR-200 beryllium. A number of failure surfaces which describe failure

envelopes are shown for illustration purposes.

8.1.1 Closure of a Failure Surface

In-plane interaction coefficients F12, Ell 2, F122, F166, and F266 that are determined

in chapter 6 for beryllium sheet material using least-squares interpolation satisfy all

conditions set by the new criterion in section 3.2 and, thus, no modification of their

magnitude is necessary. On the other hand, interaction coefficients F13, Fll 3, F133, F144,

and F244 do not satisfy the closure conditions found in the same section. This is done using

a FORTRAN code, named CHECK, that examines all conditions of closure. Coefficients

F23 , F223, F233, F255, and F355 also violate closure conditions. A scheme is needed that

establishes functionals which yield an appropriate set of coefficients that satisfies all

conditions of closure.

As an example, consider the set of coefficients FI3 , FI13, F133, F144, and F244. The

failure criterion first calls for an estimate of the normal interaction coefficients. These

coefficients are only functions of the normal stresses at failure excluding uniaxial stress

situations. Using the experimental data from chapter 6 and employing a least-squares fit,

preliminary coefficients of Eqs. 232-236 are determined. Subsequently, the magnitude of

these coefficients is altered using CHECK that tests for satisfaction of all necessary closure

conditions defined in sections 3.1 and 3.2. The program initially reads ultimate stress data

for each set of coefficients and prepares matrices in a format suitable for LISP that are,

subsequently, employed by the mathematical package MACSYMA for determination of the

unknown coefficients using least-squares. It should be noted that data for the coefficients

from section 6.3 involve both normal and normal-shear interaction coefficients. Initially,

however, the criterion for closure requires estimation of the normal interaction coefficients.

Thus, partitioning of each data matrix is employed to accomplish this task. If the new set

of normal interaction coefficients does not satisfy the necessary conditions the same

technique is repeated in an iterative manner until all conditions are met.
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Once the normal interaction coefficients have been determined, a second functional,

corresponding to Eq. 199, is defined that yields a set of non-linear polynomial equations.

These equations are solved simultaneously using MACSYMA to determine the final

normal-shear interaction coefficients. CHECK prepares the matrices necessary to establish

the remaining coefficients in a manner similar to that described for the normal interaction

coefficients Subsequently, these coefficients are checked for closure. In the event that

closure is not obtained, the program alerts the user as to which coefficient and what

condition of closure is violated. In this case, necessary conditions for closure are appended

to the functional in the form of Lagrange constraints. Minimization of the new functional

yields a number of equations that are solved simultaneously. Thus, a new set of normal-

interaction coefficients is established. Closure conditions are checked and in the event that

not all conditions are satisfied the functional is modified again so as to accommodate the

necessary conditions for closure. This procedure is repeated until closure is accomplished

for all normal-shear interaction coefficients.

As an example, consider the case of closure for the normal interaction coefficients

FI3 , FI13, FI33. The magnitudes of these coefficients are given by Eqs. 239-241 of

chapter 6. They are presented in a matrix form as follows

Fm = 11.81 xlO -9 MPa -J ............................................................... (279)

Fm [.1. 96 xlO-9 MPa-3

Since these coefficients do not satisfy the conditions of closure, the magnitude of each

coefficient is modified via CHECK in order to meet all necessary conditions. For this case,

eight interations are needed to accomplish the task. The final result yields the following

coefficients:

I ]
Fm

-2.15 x 10 -7 MPa -2]

2.55 xlO -1° MPa -3 [ ............................................................. (280)

1.74 xlO-l°MPa -_ j

8.1.2 Convexity of a Failure Surface

Although all normal and interaction coefficients satisfy requirements for closure as

defined in sections 3.1 and 3.2, convexity of the generalized failure surface may not be

satisfied. To ensure that convexity is satisfied, all coefficients, interaction and normal, need

to satisfy certain relations. For a surface to be convex the equation of the surface must be

either positive definite or positive semi-definite (Thorpe 1979). For this condition to be
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satisfied, it is sufficient to show that the determinant of the failure surface function is greater

than or equal to zero. Due to the fact that the failure surface incorporates second, fourth,

and sixth-order tensors it is required that the determinant of each individual tensor is greater

than or equal to zero:

Det[ F, ] _>O ............................................................................................ (281)

Det[6 ]_>O ............................................................................................ (282)

Det[_ k ]20 ........................................................................................... (283)

where i, j, k = 1, 2, ..., 6. It is stressed that the convexity conditions of the polynomial can

be checked in either the uncontracted or contracted configuration. The contracted

configuration is chosen for this discussion.

The determinant of each tensor polynomial is as follows (Wu and Scheublein 1974;

Bradley 1975):

Det[ F, ] =

--

F, O0000

01:20000

OOF, O00

O00F_O0

O000F, O

000001:,

............................................................ (284)

-F. F_: F. 0 0 0

F,: r2, C, 0 0 0
_, C, C, 0 0 0
0 0 0 F. 0 0

O 0 0 0 Fs50

O 0 0 0 0 F6,

........................................................ (285)

De,[_] Det[Fo,] [ j] [ ,] [ , ] [ il [ J:] ................ (286)= Det F 2 _ Det F_ _ Det F, _ Det F_ _ Det F 6

It should be noted that Eq. 284 is automatically satisfied since F 4, F 5, and F 6 are

zero for orthotropic material. The determinants of all sub-matrices of Eq. 284 should also

satisfy Eq. 281. This is achieved if all non-zero components of the contracted second-order

tensor in Eq. 284 are positive:

F, 20 For i =1,2,3 ............................................................................... (287)
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From Eq. 285 the following conditionscausethe failure surfaceto becomeconvex(Tsai
andWu 1974;Karr et al. 1983;andBradley1975):

F,i 20 For i =1,2,...,6 ................................................................................ (288)

F,F_ -F,f -20 For i,j=1,2,3 ..... 6;j xi .................................................... (289)

Det[_ ]=_-l)_")FhF2j...F6, -20 For i,j...,n= l,2,3,...,6 ........................... (290)

where o(rr) is an index which takes the value of 1 for even permutations, the value of -1

for odd permutations of the numbers 1 through 6, and there is no summation of repeated

indices (Bradley 1975).

For convexity to be satisfied at all levels, that is, for a surface to be convex for any

combination of stress components, it is necessary and sufficient that the cubic-order tensor

determinants satisfy Eq. 286 for the overall determinant, Det[Fqk], as well as for any

combination of product of the sub-determinants (Thorpe 1979). For example, if a state of

stress is imposed on a structure in such a manner that only o-1, o-2, o-3, and o"4 are present,

then both the matrix and sub-matrices should satisfy Eq. 286. The determinant of F/j k

automatically satisfies this condition since Det[F5jk] and Det[F6jk] are zero (Wu and

Scheublein 1974). Sub-matrix determinants should satisfy the relations

Det[ F_jk ]Det[ F_jk ]Det[ F3j_ ]Det[ F4jk ] _>0 ...................................................... (291)

Det[F_j k ]Det[F2j k ]Det[Fjj k ]-20 .................................................................. (292)

Det[F_j k ]Det[F_j k ]Det[F,j_ ]-20 .................................................................. (293)

Det[Flj k ]Det[F_j k ]Det[F,j k ]_>0 .................................................................. (294)

Det[F2j k ]Det[F3j k ]Det[F, jk] -20 .................................................................. (295)

Det[F_jk ]Det[F2_ ] -20 .............................................................................. (296)

Det[FIj _ ]Det[F3j _ ]-20 .............................................................................. (297)

Det[Frj,]Det[F_j_]_>O .............................................................................. (298)

Det[F:j k ]Det[Fjj_ ]_>0 .............................................................................. (299)

Det[F2j _ ]Det[F,,k ] _20 .............................................................................. (300)
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Det[Fj_]Det[F_j.]20 .............................................................................. (301)

These equations are satisfied when each sub-determinant is either positive or zero.

For the case of cross-rolled beryllium sheet, an orthotropic material, determinants of the

cubic-order coefficients are as follows:

0 F.2

F._ 0

0 0

0 0

0 0 0

"F,,, 1:,,2

Fm 0

0 F_,,

0 0

0 0

0 0

"F., 0

0 Fm F,.

F., F,,, 0

F m 0 0 0

0 000

F m 0 0 0

0 F1. 0 0

0 0 _. 0

0 0 F,_ 6

00 00

F:2_ 0 0 0

F,j_ 0 0 0

0 1:2. 0 0

0 0 F2. 0

0 0 0

F._ 0

0

0 0

0 0

0

"0

0

0

0

Fu,

0

"0

0

0

0

Fm

0

0

0

0 0

0 0

0

0

0

F2.

0

0

0

0

0

F2.

0

F266

0 0

0 0

0 0 0

F_,, 0 0

0 1:355 0

0 0 F_66

1:1. 0 0-

0 F2. 0 0

0 Fm 0 0

0 Fj,, 0 0

Fm 0 0 0

0 0 0 0

0 F_. 0 O"

0 F2. 0 0

0 Fm 0 0

0 0 0 0

F_. 0 0 0

0 0 0 0

.................................................... (302)

.................................................. (303)

.................................................. (304)

................................................ (305)

................................................ (306)
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"0

0

0

0

0

F166

0 0 0 0 F166

0 0 0 0 F266

0 0 0 0 F366

0 0 0 0 0

0 0 0 0 0

F26_ F366 0 0 0

................................................. (307)

Determinants of F4jk, F5jk, and F6j k are equal to zero. Consequently, the

determinant of the global tensorial matrix (Eq. 283) is positive semi-definite since it is equal

to zero. The requirement that determinants ofFijk, F2jk, and F3j k be positive semi-definite

introduces conditions of convexity. These conditions are expressed by the following

equations:

4 FmFi,J + F_22Fm2 )FI,,FmFI,, -20 ........................................................... (308)

4 Fu2F_232 + F233Fm 2)F2,,F2,,F26, _20 ........................................................... (309)

4 F22jFm 2 + Ft,3F2332)FJ,4FmFJ66 20 ......................................................................... (3 10)

Program CHECK warns the user of possible conflicts that may be associated with

the convexity conditions and indicates which coefficients need to be modified.

8.2 Failure Surfaces

Combining the results obtained from chapters 5, 6, and 7 and assuming that

hydrostatic pressure does not cause failure, it is now possible to define the failure surface

criterion for cross-roiled beryllium sheet, SR-200 specification. This is obtained by

numerical substitution of the principal and interaction coefficients into Eq. 61 and results in

the following equation:

(2.44o._ +2.31o. 2 +29.33o.3)xlO-3(ksi-t)+[l.35o.l 2 +1.25o'2:+1.33o'3 _ +1.67o._ _

+ .39o/+5. 7C -2(0.61o,o, +0. 0o,o, ÷0.62o:,)1
+3(-2.26 o.12o'2 +0.84o.12o._ -0.71o)o.22 -0.56o.22 o.3 -0.55o)o.j 2 -0. 49o.2o. J (311)

+O.19 o.l o.J -1.10o'2o" J + 0. 4 5 o.jo'J -1. 4 2 o._o.5_ -0.21o'2o.5 _ - 2.19 o._o./

-3.16o._o.J -3.16o.2cr6 2 +O.OOo.3o.J ) x lO-7 (ksi -3 ) =1

Although the failure surface for beryllium sheet is a function of six stress

components, three normal and three shearing stresses mutually perpendicular to each other,

the graphical representation is limited to a maximum of three components of stress at a

time. For the purpose of this study, graphical representations of a maximum of, at most,
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three components of stress are presented. Moreover, a total of twenty [6T/(2x3x31)]

possible combinations can be obtained. However, some of these combinations are unlikely

to occur. For example, a beryllium plate structure is unlikely to be designed to withstand

out-of-plane shear and in-plane normal stresses such as (crl, o-4, o-3), or (o-2, 0"4, o.5), or (o'3,

o-4, o-6)"

For illustration purposes, a number of failure surfaces are presented that involve

various combinations of stress components. A total of six failure surfaces are plotted.

These surfaces are shown by means of gray-scale fringe plots and contour plots in Figs. 146

through 151. The failure surface for any other combination of stress components can be

plotted provided that the appropriate equation is extracted from the generalized Eq. 311.

This is done by setting equal to zero the components of stress that are not considered. As

stated earlier, for plotting purposes only three components of stress can be considered at a

time in order to form the appropriate failure surface.

o2

o 6 =303.4 MPa

o6

o 1

FIG. 146 Failure Surface for o.1, °2, °6
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FIG. 147 Contours of Failure Surface for cr1, _2, _4

05 = 578.1 MPa

01

o s = 586. 8 MPa

FIG. 148 Contours of Failure Surface for _1, _2, °5
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FIG. 149 Failure Surface for 0.1, °3, °4

1000

5OO

-500

D.
,-_ - 1000

#
- 15OO

-2000

-2500

-3000

-]500 -1000 -500 0

CT, (MPa)

i i i i

500 1000

-- (75 : 0

....... o5= 138
..... o5 : 276
...... 0"5 = 414
__ 0 5 = 483

FIG 150 Failure Surface for 0.j, 0.3, 0.s
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FIG. 151 Failure Surface for o-4, os, °6

8.2.1 In-Plane State of Stress (o-l, 0"2, and 0-6)

The failure surface shown in Fig. 146 is valid for in-plane normal and shearing

stresses o-l, 0"2, and 0"6, respectively. It is defined by the relation

(2.440" I +2.310.2)xlO-3(ksi-J)+[1.350.12 +1.250.22 +5.170"62

-2(0.61o-,o-2) ] x lO-_(ksi -') ..................... (312)

+3(-2.260",20"2 -0.710"10"22 -3.16tyt0"62 -3.160"20"62) xlO-7(ksi -3) = 1

The surface is symmetric about the 0"1-0"2 plane. This is due to the orthotropic

nature of beryllium, i.e., positive and negative shearing strengths (0-6) have the same

absolute value. It should be noted from Fig. 146 that this failure surface is nearly symmetric

with respect to the plane defined by the relation

o-1 -0"2 --0 ............................................................................................ (313)

Moreover, the major interaction zone of the normal stresses a I and 0.2 occurs in the

positive quadrant of the failure surface, ie, the tension-tension region.

f, _-
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8.2.2 Combinations of In-Plane Normal Stresses (0-1, 0"2) and Out-of-Plane

Shearing Stress (0"4 or 0-5)

The two failure surfaces shown in Figs. 147 and 148 are those associated with two

in-plane normal stresses and an out-of-plane shearing component of stress 0-4 and o-5,

respectively. The equations of these surfaces are

(2.44o', +2.31o.2)xlO-'(ksi-' )

+[1. 350-, 2 +1.25o.22 +1.67o', 2 -2(0.610",o.2) ] xlO-4 ksi -2 ................. (314)

+3(-2.26o.,2o.2 -0.71o.,o.22 +0.190.,o.J -1.10o'20-, 2) xlO-Z(ksi -s) = 1

(2.440-1 +2.31o.2) x lO-3(ksi-') + [1.35o.l 2 +1.25o.22 +1.390.s2-2(0.610-10-2)1

x10-4(ksi-2)+3(-2.26o.,2o.2 -0.71o',o'22 -1.42o',0.s 2 -0.210.20.s 2) ....... (315)

xiO-7(ksi)=i

As in the case of Eq. 312, the shapes defined by these curves are nearly symmetric

with respect to the o'1-o"2 plane and the interaction of terms is largely due to the relationship

between the normal stresses in the tensile region of the failure envelope.

8.2.3 Combination of Normal Stresses 0-1, 0-3 and Planar Shearing Stress 0-4

Failure surfaces presented by recent theories deal mainly with in-plane stress or

strain failure. Experimental work for cross-rolled beryllium sheet described in chapters 4, 5,

6, and 7 permits the determination of failure surfaces that incorporate the through-thickness

normal and shearing stress effects. One such surface involves stress components 0-1, °'3, o.4,

where o-1 and o"3 are normal stresses and 0"4 is the shearing stress associated with the (1-3)

plane. Thus, Eq. 311 becomes

(2.440- I +29.33o'3)xlO-J(ksi-')+[1.350-1 _ +1.33o'_ 2 +1.670-42 -2(0.10)o'10-j]
.(316)

xlO-_(ksi -2) + 3(0.84o't2o', -O.SSo't0-, 2 +0.19o',0-J +0.4So',0", 2) x lO-Z(ksi -' ) = 1

As is the case for Eq. 311, the shape defined by the surface is nearly symmetrical

with respect to the °'1-°3 plane. However, the interaction of stress components shifts to the

compression-compression quadrant of the failure surface (Fig. 149). From the failure

surface it can be deduced that the material withstands much higher compressive Ioadings in

the through-thickness direction and directions associated with in-plane axes (1-3) compared

to tensile ioadings for the same orientations.
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8.2.4 Combination of Normal Stresses 0"2 , 0"3 and Planar Shearing Stress 0"5

Another combination that considers an out-of-plane component of shearing stress in

conjunction with in-plane components of normal stress is given by

(2.31o- 2 + 29.33o-3) x lO-'(ksi-') + [1.25o- 7 +1.33cr, 2 + l.39o-J -2(O.62o-2o-j) ]
..... (317)

xlO4( ksi) + 3(0.840",'0., -0.550.,0", 2 -1.42o',o'7)xlO-r(ksi -') = 1

This stress combination is similar to the one described in section 8.1.3 in that it

considers two normal stress components (o- 2 and 0.3) and the shearing stress associated with

the (2-3) plane, 0.5- Again, the interaction of stress components shifts to the compression-

compression quadrant of the failure surface and the material appears to be able to withstand

higher compressive than tensile stress conditions (see Fig. 150).

Failure in the tension-tension zone is limited due to the fact that the tensile strength

of the material in the out-of-plane direction is considerably lower than the respective tensile

strength in the same direction. In addition, considerable interaction of the normal and

shearing stress components is not evident in this region.

8.2.5 Combination of Shearing Stresses 0"4, °'5, and 0"6

Although, it is very unlikely for a stress combination that involves only the three

mutually perpendicular shearing stress components to occur, the failure surface defined

from such a state of stress is presented for the sake of illustration. The equation required to

graph the failure surface for shearing components is given by the relation:

(1.67o-,_2-/-1.39o',2+5.17o-J)xlO-4(ksi-')=1 ...............................................(318)

The surface described by this equation is that of an ellipsoid (Fig. 151). It should be

noted that the sheafing stress failure equation does not involve any interaction coefficients

among the three components of shearing stresses, i.e., it is assumed that for an orthotropic

material such as cross-rolled beryllium sheet the shearing stresses act independently.



9. NUMERICAL MODELING AND FAILURE PREDICTION

FOR SR-200 BERYLLIUM STRUCTURES

9.1 INTRODUCTION

The current study of cross-rolled beryllium sheets incorporates numerical simulation

of the experimental set-ups for establishing the failure criterion. Numerical simulation is

also used to predict the state of stress for structures subjected to a variety of loadings. This

simulation is done mainly for three reasons: (a) to optimize the geometrical configuration of

the experimental specimens such that a minimum amount of material is used and, thus, to

reduce manufacturing costs; (b) to check the validity of the desired state of stress for each

experiment, especially in cases where two or more stress components are involved; and (c)

to analyze cross-rolled beryllium structures under either a simple or complex static state of

stress, and predict ultimate loads and stresses that the structure can withstand.

Discussion in this chapter focuses on details of the different types of finite elements

incorporated in the numerical models and the failure prediction scheme used for SR-200

beryllium structures. Comparison of numerical simulation and experimental results for

several structures demonstrates accuracy of the failure criterion.

9.2 NUMERICAL MODEL SPECIFICATION

All finite element models are prepared using an engineering graphics package,

PATRAN-II (1991). Pre-processing involves generation of the physical dimensions of the

structure under consideration, finite element meshing with elements chosen from an element

library available in the package, implementing necessary and essential (displacement and

load) boundary conditions, optimizing the model and reducing central processing unit

(CPU) time using techniques such as the root-mean-square bandwidth, and translating the

model into an input file that can be used with a finite element commercial code for the

actual analysis.

The FEA package used to analyze all numerical models for cross-rolled beryllium

sheet structures is ABAQUS, a non-linear, general-purpose implicit FEA code. It allows

for incorporation of user subroutines for pre-processing, analysis, or post-processing

modifications. ABAQUS provides a very wide library of elements for use in structural

analysis as well as specialized elements, such as interface elements, for analyzing contact

problems or linking solid and plate elements.
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A varietyof elementsis usedfor thenumericalanalysis of beryllium structures. The

choice of elements for each structure is based primarily on the state of stress, geometry of

the structure, and accuracy required. Fig. 152 shows each type of element that is used and

the corresponding nomenclature of ABAQUS. In addition, for the sake of completeness the

degrees-of-freedom are listed for each element.

ELEMENT TYPE

CPS8_

[RS_

ELEMENT DESCRIPTIDN DEGREES OF
FREEDOM

AXISYMMETRIC ELEMENT
8 N_DE QUADRATIC
REDUCED INTEGRATION

PLANE STRESS ELEMENT
8 NODE QUADRATIC
REDUCED INTEGRATION

IGENERAL SHELL ELEMENT
18 NODE QUADRATIC

REDUCED INTEGRATION

3-D CONTINUUM ELEMENT
20 NODE QUADRATIC BRICK

INTERFACE ELEMENT

(NODE AND RIGID BODY)
2 NODE LINEAR

UX_

U x _

U x )

Uy

L_ L_Y' z

q_y

Uy_ L3 z

FIG. 152. Finite Elements Used for Numerical Simulation

The material properties for cross-rolled beryllium sheet used in all analyses are those

discussed in chapters 4 and 7. It should be noted that initially the material properties

incorporated in the numerical models were those reported by Fenn et al. (1967). Although

these properties adequately describe the behavior of this material for relatively simple states

of stress, i.e., uniaxial and true biaxial, they fail to yield satisfactory results for a cross-rolled
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beryllium structuresubjectedto a complexstateof stress,e.g., normal through-thickness

stresswith in-planetensionandshearingstressesactingsimultaneously.

9.3 AUTOMATIONOF NUMERICAL SIMULATION

Closed-form solutions for nonlinear orthotropic plate problems are rare and

extremely limited in generality. Also, for structures under complex loading conditions,

closed-form solutions are usually untenable. For these reasons finite element analysis (TEA)

is employed in this study to predict stresses and, thereby, failure loads. This method of

analysis offers the generality needed to model structures with complex geometries, as well

as the flexibility to simulate non-homogeneous orthotropic material and behavior into the

range of nonlinear geometry.

ABAQUS yields stress levels at all salient locations within a continuum. This

numerical data is used in conjunction with the high-order criterion to predict failure. The

general procedure is to iteratively adjust the load. Each nodal point in the structure is

checked after each analysis for exceeding limits of the failure criterion (see Fig. 153). If

stresses at all locations in the structure due to a given load render the left side of Eq. 311

less than unity, it is predicted that the component does not fail. In this case the load is

increased and the finite element analysis is repeated. If the state of stress at one or more

nodal points renders the right side of Eq. 311 greater than unity, it is predicted that the

stresses in the component exceed failure stresses. In this case the load is decreased and the

analysis is repeated. The failure criterion is satisfied when the left side of Eq. 311 is within

a specified tolerance of unity, at one or more points. Thus, failure of the structure is

predicted to occur and the analysis is terminated.

To begin the process, the user is requested to supply the name of the ABAQUS

input file. The magnitude of load for this first analysis is usually chosen to induce stresses

that are well within the linear elastic range of the material. After the first analysis, the

program updates the load levels of the input file in the following manner: It first checks,

using Eq. 311, the value of the stress envelope at each node, f(aj); each component of load

is then increased or decreased by the factor

l-f(tr,)

df= f(trj) ........................................................................................ (319)

Note that this equation assumes a linear relationship between the load and stresses and does

not correct for non-linear behavior. The process is repeated until the term 1-f(aj) is within

+1% for one or more nodes, and stresses at the remaining nodes are within the failure
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envelope. This loadlevel is predicted to cause failure. For example, consider a structure

that has a concentrated load of 4.45 kN (1.0 kip) and a uniform through-thickness pressure

of 689.5 MPa (100 psi). Suppose that the initial analysis check yields a factor f(cri) of 0.84.

In this case the updated load levels are 5.30 kN (1.19 kip) and 820.8 MPa (119.0 psi) for

the concentrated force and uniform pressure, respectively. For loads at multiple nodes, the

magnitude of each load is prorated according to the last incremental load state. If more or

less precision is desired the tolerance for the term 1-f(oj) can be easily modified to

accommodate the new requirement.

This procedure is implemented on a CRAY/YMP 2/116 running UNICOS 6.0. A

batch file obtains user input and controls two programs: ABAQUS version 4.9 and a special

purpose FORTRAN program. Fig. 153 illustrates the control that is applied by a custom

command procedure, also known as a script file. The procedure first obtains the necessary

user input data for ABAQUS, such as the name of the FEA model and starts the analysis by

ABAQUS. After the analysis is complete the FORTRAN program checks for stresses that

exceed failure, and either terminates the job or restarts ABAQUS at a new load level

depending on the existence of a file named "fail.dat" that is conditionally created by the

FORTRAN code.

I RUN

\tssrR INP \
1

latin  AQtrS I

FORTRAN PROGRAM[

MODIFY LOAD

ABAQUS _

FIG. 153. Flow Chart for Batch Submission

The FORTRAN program, "cb.exe," accomplishes four functions. It reads stresses

from the output file of ABAQUS, checks these stresses for exceedence of the limits of the

failure criterion, reads the ABAQUS input file, and generates a revised version of the
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ABAQUS input file. The flow chart in Fig. 154 illustrates the order in which the program

performs each function. The FORTRAN code reads the ABAQUS output file node by

node, substitutes the state of stress at each FEA node into Eq. 311, and determines whether

or not the stress at any point within the body exceeds the failure criterion. It should be

noted that this code can be modified such that it reads the stresses at the integration points

(Gauss quadrature points) instead at the nodes. If failure has occurred the program writes a

list of one or more failed nodes and their corresponding magnitude from evaluation by the

failure criterion to a file named "fail.dat." If failure is not predicted the program reads the

current FEA input file, modifies the magnitude of the load according to Eq. 319, and

generates a new FEA input file.

\READ ABAQUS OUTPUT\

\WRITE FILE "fail.dat"\ \READ INPUT FILE\

I COMPUTENEW LOAE

i
\ ITE INPUTFILE\

I

FIG. 154. Flow Chart for FORTRAN Program

An example of all computer files used in the procedure is shown in Fig. 155. This

figure displays the general flow and relationship of each file. Initially, "abapp," the batch

file, calls for ABAQUS to analyze the structure that is defined by the input file

"example.inp." ABAQUS performs the analysis and returns three files: "example.ill," which

contains displacements, strains, and stresses as well as the model's material and geometric

properties in ASCII format; "example.dat," which is a text file listing model and output

results; and "example.res," which is a restart file. A failure prediction check is performed by

"cb.exe." If the structure fails then the conditional file "fail.dat" that lists failed nodes is

created. If the structure does not fail "cb.exe" creates the restart file "res.inp" which

contains an updated load history that ABAQUS uses for further analysis. The same

procedure is repeated until the structure fails, i.e., for each adjusted loading case the files
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"example.ill," "example.res,"

theanalysis for failed nodes.

and "example.dat" are created and "cb.exe" checks output of

I, ,Q sH examp,o. pI

cb.exe I

r-L ].U_i_Ld_5I reJ.i_p H _AQUS

t I 1
Jexampte.m I [exampie.res J l example.dat I

r_Ln 1

FIG. 155. Hierarchical File Sequence of Failure Prediction Scheme

Execution times vary according to the model size and the number of increments

needed. For linear analysis of two-dimensional models comprised of eight-noded,

quadrilateral, isoparametric elements the execution time is approximately equal to the

number of increments times the time it takes for a single linear analysis. For example, if the

analysis for each load increment uses two minutes of central processing units (CPU) time

and it takes ten increments to predict failure, then the failure analysis takes approximately

twenty minutes. For failure analysis using nonlinear geometrical simulation the program

takes approximately twice as much CPU time as that required for a single linear analysis.

The same pattern is observed for execution times of three-dimensional models.

9.4 VERIFICATION OF FAILURE PREDICTION

9.4.1 Plate-Plug Experiment

9.4.1.1 Description of Laboratory Experiment

In an effort to predict brittle failure of anisotropic cross-rolled beryllium sheets, a

special experiment was designed to induce a complex state of stress (Papados 1991). A

38.l-ram x 38.1-mm x 2.54-mm (1.5-in. x 1.5-in. x 0.1-in.) cross-rolled beryllium SR-200

sheet was brazed to a beryllium block plug using silver foil BAg-19 brazing (see Fig. 156).
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Table 11 (chapter 5) summarizes the chemical composition of the cross-rolled beryllium

plate and plug. The plug was also brazed to a SS-44M-7-4 pressure fitting which, in turn,

was connected to a 137.9-MPa (20.0-ksi) MTS hydraulic pressure actuator via SS-483-A-

24 pressure tubing. The MTS hydraulic pressure actuator was calibrated for pressure

loadings of up to 34.5 MPa (5.0 ksi) as shown in Fig. 157. To ensure safety and confine

flow of hydraulic oil, the plate-plug specimen was enclosed in non-transparent tubing with

Plexiglas sealing each end.

2.54- _ I

W

<_

<

SR-200

Beryllium.
Sheet

FIG. 156. Plug-Plate Arrangement

Six Micro-Measurement EA-06-031CE-350 strain gages were mounted on the

cross-roiled beryllium sheet: five on the surface of the side opposite the plug and one on the

plug side of the plate. Fig. 158 illustrates positions of the strain gages on the specimen.

Strain gages were selected to match thermal coefficient recommendations for beryllium

experiments. Moreover, this type of gage was selected due to its relatively short length and

self-compensating temperature characteristics at room temperature. Gages were mounted

onto the beryllium surface following procedures recommended by the gage manufacturer.

Nominal resistance of the strain gage was chosen to be 350 ohms due to data acquisition

requirements. LabTech Notebook, version 5 (LabTech 1987), and an interface board

provide real-time data acquisition. It should be noted that eight strain gages were originally

mounted on the bottom surface, but gages 1 and 8 were damaged during preliminary trial
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loadings and, thus, only six were functioning at the time the structure was loaded to

ultimate failure.

35

0
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FIG. 157. Pressure Calibration of Hydraulic Actuator
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FIG. 158. Location of Strain Gages on Plate-Plug Specimen
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Load was applied to the structure by increasing pressure in the hydraulic cavity at a

rate of 344.8 kPa/s (50.0 psi/sec). Graphs of strain versus pressure distribution are

presented in Figs. 159-161 for functioning strain gages. Normal strain in the center of the

beryllium plate (Gage 2) was linear with increasing hydraulic pressure and reached a

maximum of 465 microstrain. Gages 3 and 6 exhibited a linear relationship with load but

had absolute strains that were much less than at the center of the plate. A nonlinear

behavior was evident for gages 4, 5, and 7. The structure failed at a hydraulic pressure of

32.5 MPa (4,710 psi).

9.4.1.2 Numerical Simulation

A three-dimensional finite element model, shown in Fig. 162, was generated for

simulation of the laboratory experiment. The analytical model exploits symmetric

geometrical properties of the specimen and, thus, only one-quarter of the actual structure is

modeled by finite elements and appropriate boundary conditions. Six-hundred and twelve,

twenty-noded hexahedral finite elements subdivide the plate-plug fixture.

Nonhomogeneous material properties model the through-thickness variations of the

elastic moduli (see section 7.3.3). Effects of nonlinear geometry are also taken into account

since preliminary numerical simulation manifests its importance. The flat plate is

approximated by ten layers of hexahedral solid elements in the through-thickness direction.

Special attention in the design of the mesh is given to the region of the plate-plug interface

due to concern that the silver foil brazing might be a critical area.

The plate-plug structure is given an initial load of 17.8 MPa (2,500 psi). A total of

four FEA analyses provide convergence to the predicted loading to within +_1%. Three

nodes located at the plate-plug interface satisfy the condition of failure. This occurs at a

load level of 34.5 MPa (5,000 psi). The percent difference with respect to unity for the

satisfaction ofEq. 311 is 0.92%.

Graphical representation of numerically predicted through-thickness displacement

and axial stress for the load case of 34.5 MPa (5,000 ksi) are shown in the gray fringe plots

of Figs. 163-164. Maximum through-thickness displacement of 7.77 x l0 -3 mm (3.04 x l0 -4

in.) occurs at a distance of 1.2 mm (0.05 in.) from the center of the plate. The maximum

tensile normal stress of 142.5 MPa (20.6 ksi) occurs at the plate-plug interface. The bottom

surface directly below the center of the plate experiences a tensile stress of 127.6 MPa (18.5

ksi). The magnitude of the normal stress component in the global x-direction is

considerably reduced in regions outside the plate-plug cavity.
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9.4.1.3 Observations

The plate itself did not fail catastrophically as expected, but rather a combination of

failures of the silver foil brazing and the beryllium plate surface caused the plate and plug to

separate. This is verified both by the thin layer of beryllium residue remaining attached to

the plug and by a series of photographs made by a scanning electron microscope (SEM) of

the plate-plug interface after failure. Two SEM photographs are shown in Figs. 165 and

166. The first photograph shows the matrix of the material prior to the experiment. A

uniform metal matrix that is free of cracks can be seen. The second SEM photograph is

taken from the failed specimen. Microcracks appear in the matrix of the beryllium

structure. Remnants of ruptured parts of the brazing medium which still adhere to the

beryllium surface are also visible.

Results from the numerical simulation indicate that in-plane stress components are

predominant in the center regions of the plate within the plate-plug cavity. A complex state

of stress is observed at the plate-plug interface which includes radial, shear, and through-

thickness normal components.

FIG. 165. Scanning Electron Microscope Photograph 1
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FIG. 166. Scanning Electron Microscope Photograph 2

Agreement of analytical and experimental results is acceptable for all strain gage

locations. Failure prediction for this structure indicates a failure pressure of 34.5 MPa

(5,000 psi) while the structure failed at a pressure of 32.5 MPa (4,710 psi). It is believed

that the difference between the experimental and numerical results is due primarily to the

premature failure of the brazing interface.

9.4.2 Clamped Plates under Influence of Concentrated Load

Experimental results for tests carried out on a series of clamped beryllium plates

loaded by a central concentrated load are reported by Mascorro (1991). Numerical failure

prediction is reported that uses a Tsai-Wu failure criterion with linear elastic analysis. The

numerical models use eight-noded shell elements and homogeneous, orthotropic material

properties. Results from two of these tests and complementary FEA simulations are used in

the current study to verify the failure prediction capabilities of the high-order criterion.

Clear span dimensions of cross-rolled beryllium plates used in the current study are

(a) 101.6 mm x 50.8 mm (4.0 in. x 2.0 in.) and (b) 50.8 mm x 25.4 mm (2.0 in. x 1.0 in.).

Each plate is clamped along all four edges and loaded to failure by a concentrated load at

the center of the structure. This is accomplished using a punching-point loader that is

tapered to a 6.35-mm (0.25-in.) diameter ball-like end (see Fig. 167).
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FIG. 167. Clamped Plate with Load Applicator

In the current study, a three-dimensional numerical model is constructed for each

test. Twenty-noded hexahedral elements simulate each plate with ten elements in the

through-thickness direction. Only one-fourth of each structure is modeled due to

conditions of symmetry. Material properties are described in chapters 4 and 7. The

concentrated load at the center of the plate is simulated using a decaying two-dimensional

exponential distribution of the actual load (Fig. 168). This load extends twice as far as the

actual radius of the mechanical loader. It should be noted that 70% of the load is applied

within a radial distance of 1.33 mm (0.08 in.) from the center of the plate. A decaying

distributed load is used due to the fact that the loader does not actually apply a concentrated

load, in a strict sense, but rather a distributed load. The highest intensity of this distribution

of load is directly below the tip of the loader. The magnitude decreases with the radial

distance from the center of the plate. However, the influence of the loader is restricted to a

distance that is two to three times the radius of the tip from the center of the plate

(Timoshenko 1970).
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FIG. 168. Load Distribution for 101.6-mm x 50.8-mm (4.0-in. x 2.0-in.) Plate

Output stresses from FEA are averaged at the nodes of each element. Magnitude of these

stresses is used by the failure prediction scheme to modify the level of the load for the next

iteration until the failure load is estimated as described in section 9.3.

9.4.2.1 lO1.6-mm x 50.8-mm (4.0-in. x 2.0-in.) Plate

The current attempt at failure prediction with the higher-order criterion uses a total

of three-thousand twenty-noded hexahedral elements each having twenty-seven integration

points to model the 101.6-mm x 50.8-mm (4.0-in. x 2.0-in.) plate. A special mesh

refinement is applied in the vicinity of the distributed load. The pressure load extends three

times the radius of the tip of the loader in a radial direction from the center of the plate,

The distributed load used in the initial FEA analysis has an equivalent force of a 1.56

kN (0.35 kip). The failure load is predicted alter six FEA iterations to be 2.51 kN (0.56

kip). Eighty-two minutes of cumulative CPU time on the CRAY is required for the

analysis. The final iteration yields six nodes that have a state of stress that lies outside the

failure surface of Eq. 311. All of these nodes are located on the bottom surface near the

center of the plate. The minimum percent difference from satisfaction of Eq. 311 is -0.4%

which occurs at the predicted load of 2.51 kN (0.56 kip). Fig. 169 illustrates the

distribution of the normal stress in the global x-direction that occurs at this load.
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Units in ksi

I ksi = 6.89 MPa

FIG. 169. Distribution of Normal Stress along Principal
101.6-mm x 50.8-mm (4.0-in. x 2.0-in.) Plate

Results obtained from this simulation are in very good agreement with the

experimental data reported by Mascon'o (1991). The failure load reported from the

experiment is 2.53 kN (0.57 kip). There is less than a 1% error between the predicted and

experimental failure load.

In addition, there is an improvement (approximately 3%) in comparison with the

numerical results from the two-dimensional formulation reported by Mascorro (1991) that

incorporates the Tsai-Wu failure envelope. This improvement is attributed to a number of

factors: (a) the current analysis incorporates a higher-order criterion that takes into

consideration interaction of stress components that the Tsai-Wu criterion neglects; the new

criterion considers components of stress in the through-thickness direction unlike the Tsai-

Wu criterion that only involves in-plane components of stress; (b) due to the inhomogeneity

of the material properties in the through-thickness direction, the three-dimensional mesh

includes a more precise material characterization of cross-rolled beryllium sheet material

compared to the two-dimensional model; (c) a more refined mesh is used for the numerical

model; and (d) a discontinuous and less refined distribution of pressure that applies two

levels of stress is used by Mascorro (1991) to emulate the loading of the indenter. This

approach is too coarse to adequately simulate the actual distribution of load. In the current

approach a continuous decaying function more precisely approximates the load.
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9.4.2.2 50.8-mm x 25.4-mm (2.0-in. x l.O-in.) Plate

A second beryllium plate (Mascorro 1991) is used to verify the high-order criterion.

It has a clear span of 50.8 mm x 25.4 mm (2.0 in. x 1.0 in.) and is clamped on all four edges

(see Fig. 167).

The experiment is simulated using a total of two-thousand seven-hundred and fifty,

twenty-noded hexahedral elements, each having twenty-seven integration points. The

results obtained from this numerical simulation, in conjunction with the failure prediction

scheme from the higher-order cubic criterion, are in good agreement with the experimental

data reported by Mascorro (1991). The failure load induced by the indenter is reported to

be 2.45 kN (0.55 kip). Numerical simulation estimates the failure load to be 2.49 kN (0.56

kip). The error between the numerical and experimental results is 1.5%. This is a definite

improvement compared to an error of 13.5% due to the failure prediction results from the

Tsai-Wu criterion (Mascorro 1991).

The initial distributed load used in the analysis corresponds to a 1.56-kN (0.35-kip)

concentrated load. The failure load is predicted after six FEA iterations. A cumulative of

78 minutes of CPU time is required for the analysis. The final iteration yields eleven nodes

that fail. All failed nodes are located on the bottom surface near the center of the beryllium

plate. The minimum percent difference from unity is -1.29% for the failure load of 2.49 kN

(0.56 kip).

Fig. 170 illustrates the final distribution of normal stress in the global x-direction of

the structure for the numerically induced failure load of 2.49 kN (0.56 kip).

FIG. 170. Distribution of Normal Stress

50.8-mm x 25.4-mm (2.0-in. x 1.0-in.) Plate
along Principal

Units in ksi
l ksi = 6.89 MPa

104.



10. CONCLUSION

10.1 SUMMARY

A macroscopic failure criterion that incorporates a cubic-order tensor polynomial

has been developed. The new criterion is multi-dimensional and actively involves all six

components of stress, i.e., in-plane and through-thickness components of stress are

considered. Application of the criterion is made for failure prediction of 2.54-mm (0.1-in)

thick SR-200 beryllium, and orthotropic material known to fail catastrophically in a brittle

manner, especially when deformed by out-of-plane loadings. However, in its most general

form the mathematical approach can be used to predict failure of other types of anisotropic

material using the same general conditions of closure (chapter 3). On the other hand, the

criterion can be simplified to predict failure of orthotropic material for in-plane stress

situations. In this case the equations simplify to the criterion proposed by Jiang and

Tennyson (1989). In the most simplified case, the higher-order criterion can be used for

failure prediction of isotropic material.

The failure prediction model is applied to cross-rolled beryllium SR-200 sheet

material using data from tensile and compressive tests that have significant stresses in all

three mutually perpendicular directions, experiments on two circular plates, and

combinations of off-axis experiments that involve three components of stress. Results of

these tests provide the required strength parameters for the cubic criterion as described in

sections 6 and 7. The strength parameters for beryllium vary considerably for different

material orientations and states of stress. For example, normal in-plane tensile and

compressive strengths are 537.8 MPa (79 ksi) and 658.8 MPa (95.6 ksi), respectively. On

the other hand, the through-thickness normal compressive strength is 1,724 MPa (250 ksi)

while the tensile strength in the same direction is 200 MPa (29 ksi). Moreover, the in-plane

biaxial strength is estimated to be 827.4 (120 ksi) which is approximately one and one-half

times greater than the in-plane uniaxial tensile strength in each direction of principal rolling.

The majority of laboratory experiments used to determine the strength magnitudes

for establishing the failure coefficients are simulated using finite elements. A variety of

elements is used for the analysis depending on the geometry and the load distribution.

These include eight-noded axisymmetric, in-plane, and shell elements, as well as twenty-

noded hexahedral elements. Two-node interface elements are used for contact problems.

The numerical analyses yield distribution of stress for various experimental setups.

Displacement, strain, and stress levels for selected output are shown via fringe plots for a
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number of simulations. In general, the FEA results are in good agreement with

experimentally measured quantities.

Material properties for cross-rolled beryllium sheet are reported by Fenn et al.

(1967). In-plane moduli are verified by experiments conducted recently by Henkener et al.

(1991) and Roschke et al. (1991). Furthermore, NDE techniques and an iterative FEA

procedure described in section 7.3 establish that the through-thickness modulus and

Poisson's ratio vary with respect to distance from the neutral axis of the plate. The through-

thickness modulus shows a variation from 296.5 GPa (43,000 ksi) at the middle plane to

533.7 GPa (77,400 ksi) at the outer layer (see Fig. 136) for an increase of 80°,4. On the

other hand, Poisson's ratios v13 and v23 vary from 0.089 and 0.091 at the center of the plate

to 0.076 and 0.077, respectively, at the outer layer for a decrease of approximately 16% in

each case. The newly determined material properties in the through-thickness direction are

used in conjunction with all three-dimensional simulations for 2.54-mm (0.1-in.) thick

beryllium sheet.

The resulting failure criterion for SR-200 beryllium is given by Eq. 311. Select

failure surfaces involving three active components of stress are presented in section 8 for

the sake of illustration. Any other combination of three normal and shearing components of

stress can be extracted from Eq. 311 and plotted in standard Cartesian coordinates.

The criterion is incorporated into a system of custom-designed routines that make

use of a general-purpose finite element analysis code, ABAQUS. Numerical simulation

applies modified load histories to a structural component that is being analyzed and checks

the stress level at each nodal point in the finite element mesh. If the component does not

meet the criterion set by Eq. 311 to within +1%, the load is adjusted according to Eq. 319

and the analysis is repeated. The same recursion scheme is followed until Eq. 311 is

satisfied to within +1°,4, at which point the component is considered to have failed and the

analysis is terminated. Non-linear geometrical analysis is used for each simulation.

Verification of the cubic criterion is accomplished by failure prediction of three

structures: (a) a plate-plug arrangement subjected to a complex state of stress via a

hydraulic loading; Co) a 101.6-mm x 50.8-mm (4.0-in. x 2.0-in.) clamped plate with a

concentrated load at its center; and (c) a 50.8-mm x 25.4-mm (2.0-in. x 1.0-in.) clamped

plate with a concentrated load at the center. Experimental and numerical results of the

latter two experiments are reported as well as failure prediction results based on the Tsai-

Wu model (Mascorro 1991). A three-dimensional FEA mesh is used to model each

structure. Symmetry conditions are exploited to reduce CPU time. Using the newly

developed failure criterion, new material characterization, and finite element code, the

failure load for each structure is predicted to within one percent. For the two plate
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structuresthis is an improvementover theaccuracyreportedby usingthe Tsai-Wumodel

(Mascorro1991).
Themainadvantageof thiscriterioncompared to those presented in the past is that

it actively involves all six components of stress and, thus, failures due primarily to through-

thickness normal and shearing stresses can be predicted. Most of the earlier criteria are

concerned only with in-plane states of stress. In addition, all possible interaction

coefficients that relate normal and shearing stresses are present in the cubic-order

polynomial failure surface. This is in contrast to other criteria that include either no or

limited interaction coefficients. Moreover, the cubic-order polynomial provides a more

accurate approximation of the failure surfaces compared to the second-order polynomials

employed by other criteria (Tsai and Wu 1971; Priddy 1974).

Disadvantages that arise from the higher-order criterion are mainly due to: (a)

mathematical complexity of the criterion including simultaneous solution of non-linear

equations in order to obtain the normal and shear interaction coefficients (see section 3.3);

(b) three-dimensional numerical simulations are required to actively involve all six

components of stress used by the failure scheme described in section 9, thus, increasing the

CPU time for each FEA analysis considerably; and (c) the criterion calls for a large number

of experiments. For the case of orthotropic material, such as cross-rolled beryllium sheet,

the minimum number of experiments necessary for establishing a failure criterion is fiiteen

(see Table 12). Twenty-four independent experiments are used in the current effort. It

should be noted that the accuracy of the high-order criterion is enhanced byincorporating

data obtained from more than the minimum number of experiments that are necessary.

The higher-order criterion failure criterion is shown to be a viable approach for

estimating failure of cross-rolled beryllium structures that are statically loaded. The

iterative computer method presented is well-suited for design and research environments.

Accuracy of the failure prediction scheme can be easily altered to accommodate more

relaxed or stricter tolerance requirements for design and evaluation of beryllium

components.

10.2 RECOMMENDATIONS AND FUTURE WORK

Cross-rolled SR-200 beryllium sheet structures loaded statically to failure under

either simple or complex states of stress can be adequately analyzed and the failure loads

can be accurately predicted using a combination of material properties (including through-

thickness variation of elastic moduli) and a new failure prediction criterion that incorporates

closure of a cubic-order polynomial tensor. However, it is recommended that more refined

work be carried out to establish an even more precise distribution of the material properties.

Special care should be given to variation of the normal modulus E 3 and Poisson's ratios v13
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and v23, in the through-thickness direction. Either destructive or non-destructive evaluation

or a combination of both methods in recommended. This will enhance accuracy of the

failure prediction model used for cross-rolled beryllium sheets, SR-200 specification.

True in-plane biaxial tests need to be performed to ensure validity of the in-plane

normal interaction coefficients. This test should be carried out in accordance to the

guidelines suggested by Ferron et al. (1988) with the exception of thinning out the middle

portion of the specimen and drilling holes. The thicker section required for the supports of

the biaxial specimen can be accomplished by appending aluminum pads on each support

area of the structure.

Another parameter that requires further investigation is the through-thickness tensile

strength of cross-rolled beryllium. Test results reported by Fenn et al. (1967) do not agree

with the hardness testing performed on the material and reported in chapter 7. A new

experimental setup needs to be devised in order to accurately determine the value of this

parameter.

In addition, testing of beryllium structures need to be carried out at both higher and

lower temperature ranges since this material is often used in aerospace applications where

temperature gradients and ranges can impose considerable stresses.

Dynamic and vibrational testing of beryllium sheet structures should be considered

in order to account for the actual states of stress experienced by beryllium sheet

components primarily during launching of the space shuttle. The new criterion can be

modified to include variations of stress (or strain) that compensate for the dynamic loadings

encountered by structures in flight. Physical testing to establish rate-dependent failure

coefficients of stress may be strenuous especially for determination of interaction

coefficients of stress rates. As a first approximation, it is suggested that only normal rate

interaction coefficients be included in the criterion.

Structural components in aerospace applications are oRen introduced to short

duration cyclic loadings. This can lead to fatigue failures. Hot-pressed beryllium shows

high resistance to fatigue cracking and endurance strength level (Brush Wellman 1986).

Fatigue studies, however, for SR-200 beryllium sheet are not complete. Thus, strength

versus number of cycles to failure (S-N) curves need to be developed for this grade of

beryllium at room and elevated temperatures. Subsequently, stress (or strain) dependent

dynamic failure coefficients can be adjusted to account for fatigue loadings. This is done by

comparing dynamic and fatigue failure strengths at different frequency levels common for

both loading situations. The more conservative of the two failure strengths is maintained

for calculating the failure coefficients and thus, establishing a complete failure criterion for

SR-200 beryllium structures.
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APPENDIX I.

FAILURE COEFFICIENTS FOR TSAI AND WU'S CRITERION

For an anisotropic material in three-dimensional space the contracted form of the

second- and fourth-order failure strength tensors are as follows (Tsai and Wu 1971):

21
F, -- .............................................................................................. (320)

F,

Fs

F,, F,_ F. F. _s F_.

G, G, F. _,
_-- F,, F,, F,, ................................................................... (321)

F. F,,

F,,

In their uncontracted form symmetry is exhibited by both sets of strength coefficients.

Thus, the number of independent strength coefficients for the contracted form ofF/and Fij

is six and twenty-one, respectively.

For an orthotropic material the number of independent strength components for F i

and F 0. further reduces to three and nine, respectively, due to uncoupling between the

normal and shearing strengths and the assumed neutral effect of the sign of the shearing

stress on the failure strength. Thus, Eqs. 320 and 321 become:

"11
F, - .............................................................................................. (322)

I

0 I

_F_J
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"F. F. F.

F_, F.

F.

000

000

000

F,, O 0

F. 0

F_

........................................................................ (323)

In addition, when a triclinic material only undergoes a state of plane stress Eqs. 320

and 321 are further simplified to

fi °.°,,°°°°...°°°°°°°...°o °,° °.°°,°°°°°.°°.°°°°°°.o°,°°.°°.°,,*°°°°°°..*,o°, °°°°,°°.°-°°.°°°°*°.= F_ (324)

F,

_= F22 F_, ................................................................................. (325)

Furthermore, for the case of a specially orthotropic material, such as graphite-epoxy

composites (Tsai and Wu 1971), the coefficients F 6, F16, and F26 can be set equal to zero.
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APPENDIX II.

OVERVIEW OF JIANG AND TENNYSONtS CRITERION

Expansion of terms in Eq 37 and application of plane stress assumptions as well as

orthotropic material behavior leads to the following equation:

F_O., + F2o. 2 + F,O., 2 ÷ F22a22 + F6_O.J + 2F_2o.,o" 2 + 3F,2o.,2o.2
............................ (326)

+3 Fz22o._o.2: ÷3F_e6O._O.e 2 + 3F_cr:o.J =1

Eq. 326 can be rearranged as follows:

(SF,,,o., +SF_,,o.,+F,,)o.," =-CF,o, +F,o., +F,,o:

+F_2o._2F,:,o., + SF,,:r,%'_ + SF,_o,,:r_ _ -1)

1989):

....................................... (327)

Closure is accomplished by imposing the following conditions (Jiang and Tennyson

(a) Ensure that the cubic equation describing the intersecting (o"1 - o'2) plane is

closed.

(b) Real values of o-6 must exist for any given values of o.l and o"2. Thus, the

asymptotic plane defined by

3E,,o. , + 3F2,,o" 2 ÷ F,, .............................................................................. (328)

should not intersect the cubic surface described by condition (a). Implications of these

conditions are described in the following sections.

INVESTIGATION OF NECESSARY CONDITIONS

From Eq. 326 the image of the failure surface on the (o.1 - 0"2) plane when o"6 = 0

becomes,

F_o._ + F_o"2 + Ft,o., 2 + F_o.J + 2F_2o'_o. 2 + 3F_,2o._2cr2 ....................................... (329)

+3 F1_O.,O.2 _ =1

The asymptotes correlating the interaction coefficients are obtained by rewriting Eq. 329 as

a quadratic in terms of either o"1 or o"2 and by minimizing Eq. 329 with respect to o"1 o"2.

Setting the coefficients of these terms equal to zero leads to:

F,, +3F,,,o., =0 ..................................................................................... (330)

F22 + 3F_2_o. s =0 ..................................................................................... (331)

2F_2 +6FH2O. _ +6F_22o'2 =0 ....................................................................... (332)
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Eqs. 330, 331, and 332 are multilpied by F1222, FII22, and -FII2FI22, respectively, added,

and rearranged to yield the following expression:

3Fm2F_22cr_ + 3FmF_2/cr 2 = F.2F_22 + F2/F m -2F_2F_t2F m .............................. (333)

which replaces Eq. 332 as the third asymptotic equation.

For closure to be ensured the asymptotes given by Eqs. 330 through 332 should not

intersect the surface represented by Eq. 329. Two conditions that guarantee closure are

derived from Eq. 331 by substitution of the tensile and compressive strength values

associated with the longitudinal material direction. These conditions are shown by Eq. 334

and 335. Similarly, Eq. 330 and 332 yield two and four additional independent conditions,

respectively; one condition per independent variable of each equation. Thus, the following

conditions are established:

-F22 _<-X' for F m >0 .............................................................. (334)

-F22 __X for
3Fl22

Fl2_ <0 .............................................................. (335)

-F_ , ___y, for
3F._

F m >0 ............................................................. (336)

-FI' 2 Y for
3F._

F m <0 ............................................................... (337)

-T
__-X' for

3F112

J<o ................................................................ (338)

-T
-- _>X for
3F.2

-->0 ................................................................ (339)

-T
-- __-Y' for
3Fro

-- <0 ................................................................. (340)

-T
2 Y for

3Fro
-T >0 .................................................................. (341)

Fm

where,

T- FJF_22 + F2/Fm - 2F_2FmF_22 ............................................................. (342)
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EVALUATION OF Ff2 AND F112, AND F122

Assuming that there are data from n sets of biaxial load tests that correspond to

(o.li, o.2i) (i = 1, 2, ..., nl), it is possible to evaluate the interaction coefficients by a least-

square fit of the cubic Eq. 329. If closure, as specified by Eqs. 334-341, is not

accomplished, one or more of the constraints that intersect the failure surface are shii_ed in

space (i.e. their coefficients are modified) in such a manner that all constraints are satisfied

and the surface is closed (Jiang and Tennyson 1989).

As an example, suppose that the asymptote,

F22 + 3F_22o. _ =0 ..................................................................................... (343)

intersects the failure surface between (-X', 0, 0) and the origin. Closure is accomplished by

shii_ing the asymptote to the leit of the line o.1 + X' = 0. Eq. 343 becomes an asymptote to

the failure surface if it is allowed to pass through point (-X', 0, 0). Then the cubic curve of

Eq. 229 can be simplified into a quadratic and linear curves. This is accomplished by

collecting quadratic, linear, and constant terms with respect to the independent variable, o"2 .

(-3F_22X' +F22)o"22 +(3F_2X '2 -2F_2X' +F2)cr 2 +(F_X'2-F_X'-I)=O ................ (344)

For an infinity of roots for cr2 to exist it must follow that:

-3F,_X' +F. =0 .................................................................................... (345)

3FH_X '2 -2F_2X' +F 2 --0 .......................................................................... (346)

FHX'2 -F_X' -I =O ................................................................................. (347)

Eq. 347 can also be obtained by substituting cr1 = -X' into the cubic criterion of Eq. 37.

Application of Lagrange multipliers allows incorporation of Eqs. 345 and 346 as constraint

conditions to Eq. 329. In this manner the following functional is obtained for calculation of

the interaction parameters:

nl

_ : _-(Fio.,, +F2cr2, +Fl,o.n 2 +F22o.2, 2 +2Fl_o.,,cr2, +3Fi,2o.;fo.2, +3F122o.,o.2,2-1) 2
,=t (348)

+2.,(-3FmX' +F_2) + 2.2(3FmX '2 -2F_2X' +F2)

where 2.1 and 2.2 represent Lagrange multipliers,

Minimizing the functional • with respect to F12, F112, FI2 2, 2.1, and 2.2 yields five

equations with an identical number of unknowns. Coefficients F i and F, (i = 1, 2) are

obtained via uniaxial tests that supply strength parameters as described in section 4. The

five equations are as follows:
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nl

-- ---23".X' +4_o-.o-2,(F,a,, +F2o-2,+F,,o-,,2+F_.%24.2F,2o,,o'2,

4"35120"1i20"2, 4"35220"2i 20"1i --]) =0

................ (349)

nl

- 3X2X'24-6_o-,, %2,(F,o-,,+F2o-2,4.F,,_,,2+F22cr__4.2F,.o-,,o-_,
i =1

2 2

4"3F112°'1i o-2i + 3FI2_o-2i crli -1) =0

............... (350)

c_

_122

nl
2

-- -33",x' _Zo-., o-,,(F,o-.4.F_o-.,4.F.o,, 24.F_.o-.,24,2F,.o-,,,7_,
i =1

4.3F1120"1i20"2i 4. 3 5220"2_20"1i --l) =0

................. (351)

- .3FmX' +F_2 =0 ........................................................................... (352)

c9¢) = 3Ft,2X, _ _2Fj2X , +F 2 =0 .................................................................. (353)
03, 2

EVALUATION OF Flu AND F_6

For closure condition (b) to be met the following asymptote, which does not

intersect the curve of condition (a), must exist (Jiang and Tennyson 1989):

3Ft66o'j +3F266cr2 +F66 =0 ......................................................................... (354)

For this condition to be satisfied Eq. 354 should not intersect the failure surface defined by

Eq. 329. This condition occurs only if the line given by Eq. 354 is, at most, tangent to Eq.

329. Solving Eq. 354 for o"2 (see Eq. 355):

(3F_,,_cr, 4. F_) ............................................................................... (355)
42 = 3F2_

and substituting the result into Eq. 329 yields the following equation for determination of

the coordinates of the point of intersection of the two curves:

Ao'j J +Baj 2 4,Ccr_ +D-0 ......................................................................... (356)

where A, B, C, and D are constants that are functions ofF i, FO, and Fi66 for i = 1, 2.

A = 27(F_aaF_e_ 2 - F_,2FI_F,_ ) ................................................................... (357)

B =9(F2_2Ftt 4-F_'F2, -2F2,6Ft_Fta -2FHaF_,6Fe_ 4-2Ft2aF_F_) ..................... (358)
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C = 3(F2,JF j -3F_FI,6F26 , + 2F22F6,F166 -2FI2FaaF26 , + F6JFI_2) ......................... (359)

D = FaJ F22 - 3 F266F6, F_ - 9 F26J ................................................................. (3 60)

The points oftangency are given by the repeating cr2 roots of Eq. 356. The closed-

form solution of the cubic Eq. 356 yields the following condition of constraint:

27A2D 2-18A B C D +4A D-B2C 2 +4B_D =0 ............................................ (361)

A functional, W, is defined from a least-squares fit of nl failure data, (trli, a2i, tr6i )

for i = 1, 2, ..., nl, and the constraint condition of Eq. 361 that is included by means of

Lagrange multipliers:

nl

+3_12aj, a2,Y'(F,cr,, +F,,cr,, +F :r2, +F,,cr,,' +2F,:r,,cr2,

+3F_2_tr, cr2,2 + 3F_a6trl, crJ + 3F266cr2/r J -1) 2 ......... (362)

÷pI(27A2D 2 -18A B C D +4A D-B2C 2 +4B_D

where/.t I is a Lagrange multiplier.

Minimizing the functional, W, with respect to F166, F266, and/.t I leads to a set of

three nonlinear simultaneous equations:

=0, _ --0, -- =0 ......................................................... (363)

Simultaneous solution of Eq. 363 (MIT Publications 1988) gives F166, F266, and/.t I
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APPENDIX III.

DERIVATION OF EQUATIONS 74, 75, AND 76

The asymptotic equations required for the satisfaction of condition (a) (see section

3.3), that are the same as Eqs. 68 through 73, are given by the following expressions:

F_I + 3Fji2o- _ + 3Fmo- _ =0 ......................................................................... (364)

F22 + 3Fmo- , + 3F223o-_ =0 ......................................................................... (365)

F_ ÷ 3Fmo- , + 3F23_a 2 =0 ......................................................................... (366)

2Fz2 + 3F.2o- , ÷ 3F_:_o-_ ÷ 3F_23o-3 =0 ........................................................... (367)

2F. ÷ 3Fmo- I ÷ 3Fmo- 3 ÷ 3F_23o-2 =0 ........................................................... (368)

2F2, +3F22,o- 2 +3F233o- 3 +3F_o'_ =0 ........................................................... (369)

Addition of Eqs. 365 and 366 and solution for o-I yields the expression:

F_2 + F. + 3F22_o-3 + 3F233o-2 ............................................................. (370)
3( Ft2 2 4-Fro)

Likewise, expressions for o'2, and o"3 are obtained from the combination of Eqs. 364

and 366, and Eq. 364 and 365, respectively:

Fl' +F_3 +3Fmo-' + 3Fmo-' .............................................................. (371)
o-2 - 3(Fro + F2_)

Fz ' ÷ F22 ÷ 3 Ft2_o-_ ÷ 3 F_'_o'2 .............................................................. (372)
o" - 3(F,.

Substituting Eqs. 372, 371, and 370 into Eqs. 367, 368, and 369, respectively, and

rearranging gives the following equations:

(3F_t2Fm +3Fu2F223-6F_22F_2,)o', +(3FmFm + 3F_22F22, -6F_,2F_2,)o'2
............ (373)

(3FmFtt, + 3Ft.F_,,-6 Fm6,,)o'_ +( 3FmF_I, + 3FmF_,, -6 6.F_,,)o-_

= 2F_,F_,,+ 2F_,F_,,- 2F.F_ ,, - 2F.F_,,

............... (374)

= 2F_,F_,,+ 2F_,F_,,- 2F_,Fm -2F,,F m

............... (375)
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Eqs.373 through375arethesameasEqs.74 through76, respectively.It shouldbe
notedthat Eqs.367 to 369 arethree-variabledependentequations,i.e., eachis a functions

of o'_, 0"2, and 0"3. Eqs. 373-375, however, are two-variable dependent expressions and,

thus, simpler to manipulate mathematically.
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APPENDIX IV.

DERIVATION OF EQUATIONS 115 THROUGH 118

The asymptotic equations required for satisfaction of condition (a) are given by Eqs.

376 and 377:

Ft, -t-3Ft,10. _ +3Fro0. 3 =0 ......................................................................... (376)

F33 +3Fro0. , + 3 F2jj0. _ =0 ......................................................................... (377)

The goal in what follows is to extract the asymptotic equations associated with the planes

described by Eqs. 376 and 377.

Suppose that the asymptotic plane given by Eq. 376 is parallel with the o-1 axis and

intersects the open-ended failure surface as shown in Fig. 4. Adjustment in the Ell 2 and

Fll 3 terms orients this plane with respect to the o"1 axis. Closure is accomplished by

requiring that the plane of Eq. 376 pass through the line (0.j, -Y', -Z'), where -Y' and -2' are

uniaxial compressive strengths along the 02 and 0"3 axes, respectively. Thus, Eq. 376 can

be modified to become an asymptotic plane for the failure surface (see Fig. 5).

Substituting 0"2 = -Y' and o"3 = -Z' into Eq. 67 and rearranging the result leads to the

following relation:

(-3 F.y' -3F.,Z' +F. )0.,2 +(3F_22Y'_ +3FmZ '2 -3Ft2Y'-3F23Z' +_ )0.,
.............. (378)

+(-3F,,,Z'"Y'-3F2,y" Z' +2F_y'Z' +F2y" +Fj,Z" -F,Z'-Fy'-I)=o

For an infinityof 0.I rootsto existthe followingconditionsfrom Eq. 378 need to be

satisfied:

-3FraY'-3Ft,,Z' +F_, =0 .......................................................................... (379)

3F,J'" +3F,.Z'_-3F,,Y'-3Fe,Z' +F_ =0 ..................................................... (380)

-3F,.Z'"Y'-3F,,,Y'"Z'+2F2,Y'Z'+F,,Y'"+Fj,Z" -F,Z'-F,Y'-I=0 ..................(381)

Eq. 381 has the same form that results if 0"2 = -Y' and 0"3 = -Z' are substituted into the

original failure criterion (Eq. 61) and, therefore, it can not be considered as a limiting

(asymptotic) equation. Thus, only Eqs. 379 and 380 are retained and Eq. 381 is no longer

considered.

Similarly, suppose that the asymptotic plane given by Eq. 377 is parallel with the o"3

axis and intersects the open-ended failure surface as shown in Fig. 4. Adjustment in the

FI33 and F233 terms orients this plane with respect to the 0.3 axis. Closure is accomplished

by requiring that the plane represented by Eq. 377 passes through the line (-X', -Y', 0.3),



219

where-X' and -Y' are uniaxial compressive strengths along the cr1 and o.2 axes, respectively.

Thus, Eq. 377 can be modified to become an asymptotic plane for the failure surface (see

Fig. 5).

Substituting o-1 = -X' and 0-2 = -Y' into Eq. 67 and rearranging the result leads to the

following relation:

(-3F_.X' -3F_.Y' ÷F.)_, 2 ÷(3F,.X '_ ÷3F_,Y '_ -3F,_X' -3F_Y' ÷F_)#,
........... (382)

4-3F,,_ X'2 Y'-3F, J '_X' +2F,_X'Y' ÷F,,X '_ ÷FJ '_ -F_X'-F2Y'-I ) =0

Similarly, for an infinity of o"3 roots to exist the following conditions from Eq. 382

need to be satisfied:

-3FmX'-3F2_jY' ÷F_ =0 ......................................................................... (383)

3FmX '2 ÷3F2_jY '2 -3F_3X' -3F_3Y' +F_ --0 .................................................... (384)

-3F,,_X '2Y' -3F,2_Y '2 X' ÷2F,_X'Y' .F,,X '_ .FJ '_ -F,X'-Fy'-I =0 ............... (385)

Eq. 385 has the same form that results if tr1 = -X' and o"2 = -Y' are substituted into the

original failure criterion (Eq 61) and, therefore, it can not be considered as a limiting

(asymptotic) equation. Thus, only Eqs. 383 and 384 are retained and Eq. 385 is no longer

considered.

Eqs. 379, 380, 383 and 384 are identical to Eqs. 115 through 118.
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APPENDIX V.

THEORETICAL DETERMINATION OF NORMAL-SHEAR

INTERACTION COEFFICIENTS

The following asymptotic expressions, originally given by Eqs. 130 and 131, will be

shown to provide the normal-shear interaction coefficients F144, F244, F344, F155, F255,

and F355:

3Fj,,o._ +3F2.o.: +3Fj,,o.j +F44 --0 ............................................................ (386)

3Fmo. t + 3Fsj_t:r 2 + 3Fmo" J +F55 =0 ........................................................................... (387)

Coefficients of each equation are determined in a separate subsection.

DERIVATION OF STRENGTH COEFFICIENTS F144, F244, AND F344

One way of rewriting Eq. 386 is as follows:

3F_,,o. 2 + 3F344o. J + F,. .................................................................... (388)
3F_,,

Substituting o"2 from Eq. 388 into Eq. 67 and rearranging, leads to the following

convenient form:

(A,,o/+A,,o/+A,,o,+A,,)+(8,,o,'+B,:," +B,,)
.......................... (389)

÷(c,,o/ o",+c,,o",o"/+c,,o,o",)=o

where,

A,4 = 27(F1,f F12_ -Fs,,F1,,FH,)

.4,, =9(F,.=F,, +2F,,,_,,F,,,-_,,_,,_,, -2F,.¢,,F,, +F,,.'_=)

A3, = 3(FJF m + 2Fu, F,,F,2 -3F_,,Fs,,F_ -2Fs,,F.F_z + 3Fs,fF_)

A ,, =0. S ( F,, _F22 - 3 Fs.F.F 2 - 9 F_,f)

B , , = 2 7 ( Fj,u_ F_, - FzuFj,,F23, )

B,, = 9(F_,fF22 + 2F_,,F_F22 _ - F_.F.F23 J -2F,,,Fj,,Fs, + F24,/F_,) ..................... (390)

B3, = 3( F,f Fs, s ÷ 2 F,,,F_.,F,, - 3 F_,,Fj,,F_ - 2 F_,,F, Fj2 + 3 Fs, f F, )

B,, = 0. 5 ( F, f Fs2 - 3 F:,,F,F_ - 9 F,,f )
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C,4 = 27( F2,,2 F_,3 4- 2Ft4,F34,F_22 - F:4,F3,4F_, 2 4- F_442 F223 -2Fx,,Fe,,F_23)

C24 = 27 ( F3442 Ft22 4-2F34,tFt4,1F223 - 844844F233 4- 844283,3 --2F244F344FI23)

G. = 18( FI::F34,F, + FI,,F2:F3- 4-F1,,F_4F2:3 - F:-F3,,FI: - FI-F2-F2, 4-F2-:F_, - F_,F2,4FJ:,)

The closed-form solution of the bicubic Eq. 389 yields repeating, real roots for 0.t

and 0"3 at points oftangency of Eq. 388 with respect to Eq. 389. Some side conditions are

necessary to ensure solution of Eq. 389. The repeating roots and side conditions are given

by the relations:

2 7 A 142A. A. 2 - 18 A 14A2_Aj_ A. + 4A 14A,_ _ - AJ A3_2 + A:_' A. = 0 ...................... (3 91)

27B,42B. 2 -IgB,,B24B,,B44 +4B,4B, J-BJBj, +B54JB,. _ =0 ............................ (392)

C,4 = 2 7 ( F2445FI I, 4.2 F_.,F_,,FI 2, -F_,,F,.F., + F_,JF25 , - 2F.,F_.F_:,) =0 .......... (393)

C5, = 2 7( F3,, 2F_55 4-2 F3,,F _.F22 , - F_.F2,,F2, , 4. F2. 2F_3, - 2 F:,, F3. F _5, ) = 0 .......... (3 94)

C34 = 18( FmF_,,F,_,, 4- F,,,F25F_._4 4-F_,4F,._F25, - F_,,F,,,,F_5 - _,Fs,,F_, 4-F2,,:F_, ..... (395)

-C,,F2.,,Fm ) =0

The following least squares functional can be set up by assuming that there are n2 sets of

data, (0"2i, 0.3i, 0"4i) for (j = 1, 2,.... n2), and by using Eq. 67 and Eqs. 391-395:

n2

s'I=Y"__,..,rF50"5,+ F,0",,+ F:,0",,"-/-F_,0",,'4.F_,0",' + 2Fz_0.5,0.,,+ 3F_5,0"J0",,
i=l

2.

+3Fz,.,0",,0",, 4.3F5440"5,0", 5 4. 3F_,,0",,0", 5 4. 3 F_440"2,0".5 -1) 5

4.v_(2 7 Az 42A442 - 18 A I, A2, A,4 A,, 4- 4 At4 A j4' - AJ A,45 4-A2, _A. ) ........... (3 96)

-/-v,( 2 7 B,4' B4,,2 -18 B,.,B,,,B,4B,,. _ 4. 4 B,,,B,,,' - BJ BJ 4- BJ B,,4)

+v,C,, +v,C,, +v,C,, =o

where u t through o 5 are Lagrange multipliers. The functional, .(2, reaches an extreme value

(maximum or minimum) when the following conditions are imposed:

c3f2 0T2 c_2 c9f2
--=0, _=0, -0, --=0.

oT2 aT2 c_2 c_2
--=0. _=0, --=0. _=0,

...................................... (397)

Thus, a set of eight non-linear simultaneous equations is obtained. A mathematical

package such as MACSYMA (MIT Publications 1988) is employed to solve for the

coefficients FI44, F244, and F344 from Eq. 397. From experiments described in sections

6.4.2 and 6.5.3 values of F144, F244, and F344 for SR-200 beryllium are -1.29 x 10 -13
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MPa -3 (-.4.21 x 10 -11 ksi-3), -9.63 x 10 -9 MPa -3 (-3.16 x 10 .6 ksi'3), and 3.30 x 10 -14

MPa -3 (1.08 x 10 -11 ksi-3), respectively.

DERIVATION OF STRENGTH COEFFICIENTS F155, F2s 5, AND F355

One way of rewriting Eq. 387 as follows:

3F2"0.2 + 3Fm0.J + Fs_ .................................................................... (398)
38.

Substituting 0.1 from Eq. 398 into Eq. 67 and rearranging leads to the following

convenient form:

( A.0.J ÷ A2,0.2 _ + A.0- 2 + A_,s) +(B.0.j' +B2,0., 2 + B.o 5 + B,,)
........................ (399)

+(c.0-/ o-,+c_,0.,'0.,+c.0-,0.,) =o

where,

A, = 27 ( F2,//71,2 - F_,._Fm 82, )

4, =9(F_,/F,, +2F_.F.F, ,, - F,.F.F., - 2F,.F_.F_,+F./ F_,)

A. = 3( F,/ 8 ,2 + 2F_,,Fs,8 , - 3 8,,F2.8 - 28.FjsF_, 4-3 F./ F2 )

A,, =O.5(Fs/8, -3FmF_, 8 -98,, 2 )

B,, =27(F./ F,. - F,,,F,,,F,,,)
B2' =9(Fm28, + 2F_,,Fs,8. -FmF_,F m - 2FmFj,._Fj, + 8,/F_,) ..................... (400)

B. = 3(FJF m 4-2Fj,._F.8, -3Fro.Fro8 -28.F,.,Fj, 4-38s/Fj)

B,, = 0.5(FJ8, - 3 8.F.8 - 9 F./ )

C. = 27(F2JS. 4-2F_.FmE,, -8,,_,,8_ 4-Fm2F22, -28,,F_-8_,)

C25 = 2 7 ( FjJ S, _ 4-2 Fj.F2jsFm - FmF2,,Sj, 4- 8,,2 F_,, - 2 F.jFmFm )

Gs = 18( F_s._FmS, 4-F,.F.8,, + FmF.Fm - F2.F.jF. - FmS-'F_"

4-8,,'F,, -F,,8,,8,,)

The dosed-form solution of the cubic Eq. 399 yields repeating, real roots for 0-2 and

0"3 at points of tangency of Eq. 398 with respect to 399. Some side conditions are

necessary to ensure solution of Eq. 399. The repeating roots and side conditions are given

by the relations:

27 A,/A,/-18 A.A,,A.A._j +4A,sA.' - AJ A.' + AJ A,j =0 .......................... (401)

27 B." B,/ -18 B.B2,B.B_, +4B.Bj,' -B2/B J +B2/B,, =0 ........................... (402)
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C,, = 2 7 ( F2J F_ ,, 4-2 F2,,FmFn2 - FmFmF_22 + Fm_ F_3 - 2 FmF:_jF_, =0 ........... (403)

C2"=27(Fm_Fn2 4-2F3_jF2'sF_'_-FmF2'sFm -2FmFmF2_' 4-Fm2F2_3................ (404)
-2F,,,F,,,F,,,)=0

G, =18(F2,,FmFu4-F2,,Fs,Fm+FmF_,Fu,-F2,,FmF_,-F3,_FI,,FJ2+F*,,:F2,.....(405)
-_,,F,,,F,,,)=0

The following least squares functional can be set up by assuming that there are n3

sets of data, (tr2i, o'3i, Crsi) for (I = 1, 2,..., n3), and by using Eq. 401-405:

nJ

1-1= _( _cr_ + F,cr,,+ F,,cra" -/-Fj,crjf-/-F.,acr,'4.2Fz_cr_cr,,-,'-3F_,.,cr,fcr,,

-¢-3F2a, cr,,acr,, 4. 3 Fa,,cr,, or,' 4. 3 Fmo',, _,' 4-3 F,,,cracr 7 - I f

÷g_ (27 a,,' a,,' - is a,, as,a,,a,, +4 a,,a,,' - 4,' a,,' +a,,' a,, ) ........... (406)

-/-g(27B,,'B,,' -18Bj,B2,B,,B,, ÷4B,,B,,' -B2,eBjs" 4. B_j'Bs,)

+¢,C,,+_,C,,+¢,C,,

where _1 through _5 are Lagrange multipliers. The functional, 17, reaches an extreme value

(maximum or minimum) when the following conditions are imposed:

:/7 :/7 8/7 :17
_=0, --=0, --=0, _=0,

:17 :17 :17 :17
--=0, _ =0, --=0, --=0,

...................................... (407)

Thus, a set of eight non-linear simultaneous equations is obtained. MACSYMA

(MIT Publications 1988) is employed to solve for the coefficients F155, F255, and F355

from Eq. 407. From experiments described in sections 6.4.3 and 6.5.3 values ofF155, F255,

and F355 for SR-200 beryllium are -9.40 x 10-9 MPa -3 (-3.09 x 10-6 ksi'3), -2.81 x 10 "10

MPa "3 (-9.22 x 10-8 ksi-3), and 2.04 x 10-10 MPa -3 (6.70 x 10-8 ksi-3), respectively.
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APPENDIX VI.

45 ° IN-PLANE STRESS TRANSFORMATION

General transformation of second-order stress tensors is as follows (Sokolnikoff

1964):

_j = a_ a_ a u ......................................................................................... (408)

where aki and ali are direction cosines for a second-order tensor transformation and Oll

and 0./j are the original and transformed stress tensors, respectively (Lekhnitskii 1987). In

matrix form Eq. 408 becomes:

[°'M] - [R]r [0.t.][R] ........................................................................(409)

where [R] is a matrix of direction cosines relating the coordinate and material axes, and

[6M] and [aL] are the stress tensors with respect to the material and loading axes,

respectively (see Fig. 171). For an in-plane uniaxiai tensile test on a specimen whose

material axes are oriented 45 ° with respect to the loading axes, [OL] and [R] are as follows:

[ioi] 07.: o° : [R] : o°Z°' i] ........................ (410)

Substituting [_L] and [R] into Eq. 409 leads to the following material stress tensor:

[aN]

"1 I

2 2

1 1

2 2

0 0

0

0

0

..................................................................... (411)

Thus, the non-zero components of stress of [O'M] are:

°'1 - 0.2 - a6 = 0.5(7,, ...................................................................... (412)

where o"1, 0"2, and 0"6 are the in-plane normal and shearing components of the [aM] stress

matrix, and o"x is the axial component of stress of the [OL] matrix. It should be noted that

the out-of-plane components of stress o'3, o-4, and 0-5 are zero.
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FIG. 171. Rotation of In-Plane Axes

ELASTIC PROPERTIES WITH RESPECT TO MATERIAL AXES

The constitutive equations for linear orthotropic material are as follows (Sokolnikoff

1964):

o.' .......... (413)61 =o.l-v12o.2-v. _ . ................................................................
E z E 2 E_

=o- 2 or, o.J .................. (414)
E2  -v2, E, .........................................................

6j = O'jEs_ V3z ._E__zo.,- vJ2 _2 ........................................................................... (415)

= o'6 ............................................................................................... (416)
Y_ Gz _

where o.i are the six components of stress with respect to the material axes, _ are

components of strain with respect to the principal material axes, 7'6 is the in-plane shearing

component of strain, E i are the three principal moduli of elasticity, v/j are the Poisson's

ratios, and G12 is the in-plane shear modulus. Substitution of Eq 412 into Eqs. 413-416

leads to the following stress-strain relations:
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[ 1 v12 ..... (417)
_, = _r, L-2-E, 2E 2 ............................................................................

1 v21 (418)c 2 --or 1 2E 2 2EI

- -o" r vJs ÷ v32 (419)
63 - _L2EI 2E2 ..............................................................................

_'6 - _-2---_--.............................................................................................. (420)
Zbl2

Moreover, stiffness coefficients (Lekhnitskii 1987) are defined as follows:

S,x= °'x _ 2E'E2 ............................................................................... (421)
6"1 E 2 - v 12E1

$2_ = °'x _ 2E'E2 ............................................................................... (422)
62 E_ - v2_E 2

$3_ =_ _- 2EIE2 ......................................................................... (423)
83 v3tE2 &v32E 1

By substituting strength values and Poisson's ratios that are obtained from the 45 ° tensile

test (see section 4.2.2) and an earlier report (Fenn et al. 1967), the following coefficients of

the stiffness matrix are obtained for cross-roiled beryllium sheet material:

S,_ =646.7GPa(93.8 x lO' psi)

$2_ =635.0GPa(92.1 xlO' psi) ................................................................... (424)

Sj_=lZ.9GPa(2.6xlO' psi)

ELASTIC PROPERTIES WITH RESPECT TO LOADING AXES

In a manner that is analogous to the stress transformation of Eq. 409, the strain

tensor can be transformed from material to loading axes as follows (Lekhnitskii 1987):

[6M] = [R] r [6L] [R] ............................................................................. (425)

where JR] is a matrix of direction cosines that relate the coordinate and material axes, and

[£M] and [rL] are strain tensors with respect to the material and loading axes, respectively.
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When the material axes are oriented 45 ° with respect to the loading axis, the relations

obtained from such a transformation are:

6,: =0.5(6, +s 2 +2e_) .............................................................................. (426)

6:, =0.5(61 + 62 -2_ _) .............................................................................. (427)

where e-x, Ey are components of strain with respect to the loading axis, and El, c2, and c3,

are components of strain obtained from Eqs. 417-420. Therefore, the modulus of elasticity,

Ex, and the stiffness coefficient, Syx, for the loading axes are calculated for beryllium sheet

material as follows (see section 4.2.2):

Ex = trx = 295.2GPa(42.8 xlO 6 psi) ............................................................ (428)

Sy,, = cr_ = -3,753.5GPa(-544. 4 x 10" psi) .................................................... (429)

where ex and Cy are obtained from strain gage measurements (Gardner 1990) at 0 ° and 90 °

with respect to the load axis, respectively, for a loading stress crx.
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APPENDIX VII.

STRESS TRANSFORMATION FOR ROTATION OF IN-PLANE

MATERIAL AXES

General transformation of stress tensors is as follows (Sokolnikoff 1964):

aro = a_CttjCtkl ......................................................................................... (430)

where aki and ctli are direction cosines for a second-order tensor transformation and _j and

crkl are the transformed and original stress tensors, respectively. In matrix form Eq. 430

becomes:

[cr_] --- [R] r [trL] [R] ....................................................................... (431)

where [R] is a matrix of direction cosines relating the coordinate and material axes, and

[OM] and [OL] are the material and load stress tensors, respectively. Suppose that two of

the principal material axes, Y and Z are rotated through an angle 0 about a normal that is

parallel with the other material direction, X, (see Fig. 172).

Z

3

"0 2

Y

X, 1

FIG. 172. Rotation of an In-Plane Axis

The stress transformation of Eq. 431 for a compressive load in the z-direction, -o-z, requires

the following [OL] and [R] matrices:
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[ oo] o[o_] : o o ,. [R] : _oso
0 - or, -sin 0

sin ............................. (432)

COS

Substituting [gL] and [R] from Eq. 432 into Eq. 431 leads to the following material stress

tensor:

[_]

0

o',0

0

0 0

sin(20)
-sin 2 0

2

sin(2 O) -cos 2 0
2

......................................................... (433)

For the case in which the axes are rotated through an angle of 45 ° Eq. 433 becomes:

9 0 0

-1 1
0

2 2

1 -1
0 -

2 2

....................................................................... (434)

Thus, the non-zero components of stress of [_M] are:

cr2 -- crj -- -cr_ -- -0.Scr, .................................................................. (435)

where a i for i = 1, 2, ..., 6 are components of the symmetric stress tensor, o-/j.
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APPENDIX VIII.

LEAST SQUARES SCHEME FOR EVALUATION OF UNKNOWN

COEFFICIENTS

The least squares scheme required for evaluation of the interaction strength

coefficients calls for a polynomial regression technique that involves more than one variable.

The purpose of this appendix is to summarize the method of least squares used for

determination of the principal and normal-shear interaction coefficients used in the failure

criterion for SR-200 beryllium.

Here, it is assumed that a best fit is required for a function that depends on multiple

variables. The experimental data associated with this function yield n, k+l tuples (Xll, X21,

x31,..., Xkl, Yl), (x12, x22, x32,'", Xk2, Y2),...,(Xln, X2n, X3n,"', Xkn, Yn). The least squares fit

equation is (Devore 1987)

f (ao,a , ,... ,a,,,ao,b,,...,b,,,c , ,... ,c,,,h I ..... tl,)

tl

=,_[Yi -(ao +alx, +a2x2, +.'. -/akxu)
i=l ................................... (436)

.-(b,x,, 2 +b2x_ _ +... -/-b_xk2_ ) -(c,x,,x2, +... +c, xck_,),x_)...

-(h,x,," +... +hkx_" ) f

where xij is the value of the ith variable associated with the j_ observation, Yi is the

computed value of the best-fit function for the ith observation, 1 is k (k-l)/2 so that all

quadratic interactions of the n variables are accounted for, and m is the order of the best-fit

polynomial. It should be noted that in Eq. 436 only quadratic interactions are shown.

However, the method may be used to include higher-order interaction terms. The

assumption for using this technique of data fit is that the experimental data obtained for

each observation are independent with respect to each other (Devore 1987).

The least squares estimates are those values of the coefficients that minimize the

functionf Upon taking partial derivatives off with respect to each coefficient and equating

the partials to zero, a system of linear equations is obtained since the polynomial f is a

quadratic function of the coefficients. The matrix representation of this system is given by

the following equation,

{Y} -- [X]{a} .................................................................................. (437)

where {a} represents the unknown coefficients in a vector form, {y} is a vector containing

the estimated values of the polynomial f for each observation, and [X] is the matrix
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containingthe poweredterms off.

are:

{y} =

{a}

Ix]

For example, the matrices corresponding to Eq. 437

{y, ,y_ ..... yk} r .......................................................................... (438)

{ao,a,,...,a k,b, ,b_ ..... b_,c,,c 2 ..... c, ..... hi ,h 2.... ,h k}r ............................ (439)

2 2 2 rn m
"1 XnX2t... xktxit x21 ...xkt XttX2t...X:k_l)tXkt... Xtt ...Xki

2 m m

1 XI2X22... Xk2Xl2 X22... Xk2X12X22... X(k_l)2Xk2 ... XI2 ... Xk2

2 2 2 m m

1 x, x2_...xk3x . xej ...xkj x, x2j... X:k__)2Xkj... Xtj ...Xk_

Iol

2 2 2 m m

XlnX2n... XknXln X2n ... Xkn X/iX21"." X(k_l)nXkn.,. Xln ... Xkn

................... (440)

The unknown variables of the {a} vector are solved using the following method:

(1) Both sides of Eq. 437 are multiplied by [X] transpose.

[X] r{y} __- [x]r[x]{a} .............................................................. (441)

For n independent observations the products [xf r [X] and [X] T {y} yield an n x n

matrix and an n x 1 matrix, respectively.

(2) The inverse of ([X] T [X]) is then found using standard matrix operation

techniques.

(3) The {a} vector can be computed by multiplying the inverse of ([xf r [X]) with

[Xf r {y} as follows:

([X]T[X])-Z[X] T {y}=([X]T[X]I-Z([X]T[X]){a} .................................. (442)

or,

{a}:([x]r[x])-'[X] r {y} .............................................................. (443)

It should be noted that if only some of the coefficients found in vector {a} are

unknown, the same method can be employed to establish the remaining coefficients. This is

accomplished by modifying the {a} vector such that it includes only the unknown

coefficients, the [X] matrix such that it does not include terms associated with the known

coefficients, and {y} by recomputing the vector to include the known coefficient terms. For

the same example presented earlier suppose that all ai, bi, and h i coefficients are known a

priori. Then Eqs. 438, 439, and 440 are modified to become:

{y} = {y ,, y2,,..., yk' } r ............................................................................. (444)
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{a} -- {ct, c2..... c, }r ................................................................................. (445)

_,ttX2t... X(k_t)tXkt

XI2X22"'" X(k-l )2Xk2

IX] = X,,X2j...X:k_,)3Xkj ..................................................................... (446)

...

Xli X21"" X(k-I)n Xkn
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APPENDIX IX.

LISTING OF C-PROGRAM TO COMPUTE MAXIMUM

SHEARING STRESS

/* torcon.c */

#include <stdio.h>

#include <math.h>

#ifndef PI

#define PI 3.1415926536

main() /* a program to compute torsional constants for orthotropic

material */

{

float beta, kappal, kappa2, mu, theta;

float betas, kappals , kappa2s ;

float a, b, c, d, g, gl, g2, mt, cl, cn;

float tn, pi4, clon, conls, mii, maxshr;

float c2on, con2s, shr4, shr5, inmjsq;

int m, n, nj, ms, mi, mj;

printf

printf

printf

printf

printf

printf

printf

" This is a Program to Compute Torsional Constantsin");

" Maximum Shearing Stresses for Orthotropic Materialin");

" in");

" written by Photios P. Papados at Texas A&M Universityin");

" in");

" in");

" Enter the Principal and Secondary Shearing Moduli (psi):in");

scanf( %f, %f", &gl, &g2); /* getting gl and g2 */

printf(" in");

printf(" Enter Cross-Sectional Geometry of Rectangular Bar or

Plate:in");

printf("('a' being the large and "b' being the short dimension

(in.))in");

scanf("%f, %f", &a, &b); /* getting a and b */

printf(" in");

printf(" Enter the Maximum Torsional Moment for this Section (Ib-

in):in");

scanf("%f", &mt) ;

c = a / b;

g = g2 / gl;

mu = sqrt (g) ;

d = c / mu;

ms = 0;

betas = 0.0;

kappals = 0.0;

kappa2s = 0.0;

pi4 = PI*PI*PI*PI;

while (m < 75)

[

mi = (m+l)* (m+l) ;

mii = mi;
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ms = ms + mi ;

mj = m+l ;

inmjsq = i/mii;

tn = tanh(mj*PI/2/d);

beta = 32*d*d/pi4/mj/mj/mj/mj*(l-2*d/mj/PI*tn);

betas +=beta;

cn = cosh(mj*PI/2/d);

c2on = inmjsq/cn;

con2s += c2on;

clon = (-l)*cos((mj+l)/2*PI)*tn/mii;

conls += clon;

m = m + 2;

}

printf("total beta = %.4f\n", betas);

printf("\n\n");

kappal = 8*d*conls/PI/PI/betas;

printf("total kappal = _.4f\n", kappal);

printf("\n\n");

kappa2 = d/betas*(l-8/PI/PI*con2s);

printf("total kappa2 = %.4f\n", kappa2);

printf("\n\n");

cl = g2*a*b*b*b*betas;

theta = mt/g2/a/b/b/b/betas;

shr4 = mt*kappal/a/b/b/1000;

shr5 = mt*kappa2/a/mu/b/b/lO00;

if (shr4 > shr5)

maxshr = shr4;

else

maxshr = shr5;

printf("For a %.2f x %.2f Section with a Torsional Moment = %.2f (ib-

in),\n \

G1 = %.2f (ks\), and G2 = %.2f (ksi)\n",

a,b,mt, gl/1000, g2/1000J;

printf("\n");

printf("The Torsional Rigidity of the Plate is %.2f ib-in*in\n", cl);

printf("\n");

printf("The Maximum Twist of the Plate is %.2f\n", theta);

printf("\n");

printf("The Shearing Stresses are: Shearl = %.2f ks\, Shear2 = %.2f

ks\in",

shr4, shr5);

printf(" \n");

printf("The Maximum Shearing Stress is %.2f (ksi)kn", maxshr);

#endif

}
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APPENDIX X.

SAMPLE INPUT ABAQUS MODEL

*HEADING

3D NEW SHEAR MODEL - 1991 (JULY).

** NEUTRAL FILE GENERATED ON: 24-JUL-91 16:05:15

**

** NODE DEFINITIONS

*DATA CHECK

*RESTART,WRITE,FREQUENCY=IO

*PREPRINT, MODELffiNO,HISTORY=NO,ECHO=NO

*NODE

i, 0.750000000E+00,

2, 0.750000000E+00,

3, 0.750000000E+00,

4, 0.750000000E+00,

5, 0.750000000E+00,

See Sections 8.2 and 8.3.

PATABA VERSION: 3.1

O.000000000E+00,

0.500000007E-01,

0.100000001E+O0,

0.150000006E+00,

0.200000003E+00,

O.000000000E+O0

O.O00000000E+O0

O.O00000000E+O0

O.000000000E+O0

O.000000000E+O0

10355,

10356,

10357,

10358,

10359,

0.206294227E+01,

0.206807685E+01,

0.207834601E+01,

0.208348083E+01,

0.208861542E+01,

NODE SETS FROM MATERIALS

0.599870265E+00,

0.601766884E+00,

0.605560124E+00,

0.607456744E+00,

0.609353364E+00,

0.500000045E-01

0.500000045E-01

0.500000045E-01

0.500000045E-01

0.500000045E-01

*NSET, NSET=MIDI

2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

2304 2305

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319

2320 2321

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335

2336 2337

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351

2352 2353

*NSET, NSET=MID2

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652

1653 1654

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668

1669 1670

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684

1685 1686

*NSET, NSET=MID3
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988 989 990 991 992 993 994 995 996 997 998 999 I000 1001

1002 1003

1004 1005 1006 1007 1008 1009 i010 1011 1012 1013 1014 1015 1016 1017

1018 1019

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

1034 1035

*NSET, NSET=MID4

1 2 3 4 5 6 7 8 9 i0 ii 12 13 14

15 16

17 18 19 20 21 22 23 24 25 26 27 28 29 30

31 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46

47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62

63 64

** ELEMENT DEFINITIONS

**

*ELEMENT, TYPE=C3D8 , ELSET=PIDI

301, 22, 23, 39, 38, 988,

302, 23, 24, 40, 39, 989,

989, 1005, 1004

990, 1006, 1005

894, 965, 966,

900, 971, 972,

*ELEMENT, TYPE=C3D8

I, i, 358,

2, 358, 359,

981, 980, 1616, 1617, 1632, 1631

987, 986, 1622, 1623, 1638, 1637

, ELSET=PID8

373, 2, 37, 673, 688, 53

374, 373, 673, 674, 689, 688

5131, 9087, 9328, 9330, 9089, 9107, 9348, 9350, 9109

5132, 9328, 9329, 9331, 9330, 9348, 9349, 9351, 9350

*ELEMENT, TYPE=C3D8 , ELSET=PID9

901, 988, 989, 1005, 1004, 1639, 1640, 1656, 1655

902, 989, 990, 1006, 1005, 1640, 1641, 1657, 1656

5151, 9107, 9348, 9350, 9109, 9127, 9368, 9370, 9129

5152, 9348, 9349, 9351, 9350, 9368, 9369, 9371, 9370

*ELEMENT, TYPE=C3D8 , ELSET=PIDIO

1501, 1639, 1640, 1656, 1655, 2290, 2291, 2307, 2306

1502, 1640, 1641, 1657, 1656, 2291, 2292, 2308, 2307
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5171, 9127, 9368, 9370, 9129, 9147, 9388, 9390, 9149

5172, 9368, 9369, 9371, 9370, 9388, 9389, 9391, 9390

*ELEMENT, TYPE=C3D8 , ELSET=PIDII

2101, 2290, 2291, 2307, 2306, 2941, 2942, 2958, 2957

2102, 2291, 2292, 2308, 2307, 2942, 2943, 2959, 2958

5191, 9147, 9388, 9390, 9149, 9167, 9408, 9410, 9169

5192, 9388, 9389, 9391, 9390, 9408, 9409, 9411, 9410

*ELEMENT, TYPE=C3D20 , ELSET=PID3

3001 4607 4609 4623 4621 4694 4696 4710 4708 4608 4617 4622 4616 4695

4704 4709 4703 4669 4670 4675 4674

3002 4609 4611 4625 4623 4696 4698 4712 4710 4610 4618 4624 4617 4697

4705 4711 4704 4670 4671 4676 4675

3527 7180 7182 7195 7193 7254 7256 7269 7267 7181 7188 7194 7187 7255

7262 7268 7261 7210 7211 7216 7215

3528 7182 7184 7197 7195 7256 7258 7271 7269 7183 7189 7196 7188 7257

7263 7270 7262 7211 7212 7217 7216

*ELEMENT, TYPE=C3D20 , ELSET=PID4

3017 4694 4696 4710 4708 3938 3940 3954 3952 4695 4704 4709 4703 3939

3948 3953 3947 4756 4757 4762 4761

3018 4696 4698 4712 4710 3940 3942 3956 3954 4697 4705 4711 4704 3941

3949 3955 3948 4757 4758 4763 4762

3543 7254 7256 7269 7267 7328 7330 7343 7341 7255 7262 7268 7261 7329

7336 7342 7335 7284 7285 7290 7289

3544 7256 7258 7271 7269 7330 7332 7345 7343 7257 7263 7270 7262 7331

7337 7344 7336 7285 7286 7291 7290

*ELEMENT, TYPE=C3D20 , ELSET=PID6

3081 4013 4969 4979 4027 4072 5030 5040 4074 4968 4975 4978 4018 5029

5036 5039 4073 4067 5014 5017 4068

3082 4969 4971 4981 4979 5030 5032 5042 5040 4970 4976 4980 4975 5031

5037 5041 5036 5014 5015 5018 5017

3575 7402 7404 7417 7415 7476 7478 7491 7489 7403 7410 7416 7409 7477

7484 7490 7483 7432 7433 7438 7437

3576 7404 7406 7419 7417 7478 7480 7493 7491 7405 7411 7418 7410 7479

7485 7492 7484 7433 7434 7439 7438

*ELEMENT, TYPE=C3D20 , ELSET=PID7

3097 4072 5030 5040 4074 4085 5091 5101 4087 5029 5036 5039 4073 5090

5097 5100 4086 4080 5075 5078 4081

3098 5030 5032 5042 5040 5091 5093 5103 5101 5031 5037 5041 5036 5092

5098 5102 5097 5075 5076 5079 5078
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3591 7476 7478 7491 7489 7550 7552 7565 7563 7477 7484 7490 7483 7551

7558 7564 7557 7506 7507 7512 7511

3592 7478 7480 7493 7491 7552 7554 7567 7565 7479 7485 7492 7484 7553

7559 7566 7558 7507 7508 7513 7512

*ELEMENT, TYPE=C3D20 , ELSET=PIDI2

5193 3765 9413 9423 4231 3777 9487 9497 4242 9412 9418 9422 4230 9486

9492 9496 4241 4237 9466 9470 4238

5194 9413 9190 9425 9423 9487 3916 9499 9497 9414 9419 9424 9418 9488

9493 9498 9492 9466 9467 9471 9470

5287 9867 9869 9880 3926 9929 9931 9942 3928 9868 9874 9879 9873 9930

9936 9941 9935 9891 9892 9896 9895

5288 9869 9871 3927 9880 9931 9933 3929 9942 9870 9875 9881 9874 9932

9937 9943 9936 9892 9893 9897 9896

*ELEMENT, TYPE=C3D20 , ELSET=PIDI3

5209 3777 9487 9497 4242 3789 9561 9571 4253 9486 9492 9496 4241 9560

9566 9570 4252 4248 9540 9544 4249

5210 9487 3916 9499 9497 9561 3918 9573 9571 9488 9493 9498 9492 9562

9567 9572 9566 9540 9541 9545 9544

5303 9929 9931 9942 3928 9991 999310004 3930 9930 9936 9941 9935 9992

999810003 9997 9953 9954 9958 9957

5304 9931 9933 3929 9942 9993 9995 393110004 9932 9937 9943 9936 9994

999910005 9998 9954 9955 9959 9958

*ELEMENT, TYPE=C3D20 , ELSET=PIDI4

5225 3789 9561 9571 4253 3801 9635 9645 4264 9560 9566 9570 4252 9634

9640 9644 4263 4259 9614 9618 4260

5226 9561 3918 9573 9571 9635 3920 9647 9645 9562 9567 9572 9566 9636

9641 9646 9640 9614 9615 9619 9618

*ELEMENT, TYPE=C3D20 , ELSET=PIDI5

3065 3946 4908 4918 3960 4013 4969 4979 4027 4907 4914 4917 3951 4968

4975 4978 4018 4000 4953 4956 4001

3066 4908 4910 4920 4918 4969 4971 4981 4979 4909 4915 4919 4914 4970

4976 4980 4975 4953 4954 4957 4956

*ELEMENT, TYPE=C3D20 , ELSET=PIDI6

5241 3801 9635 9645 4264 3813 9709 9719 4275 9634 9640 9644 4263 9708

9714 9718 4274 4270 9688 9692 4271

5242 9635 3920 9647 9645 9709 3922 9721 9719 9636 9641 9646 9640 9710

9715 9720 9714 9688 9689 9693 9692

*ELEMENT, TYPE=C3D20 , ELSET=PIDI7
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5257 3813 9709 9719 4275 3825 9783 9793 4286 9708 9714 9718 4274 9782

9788 9792 4285 4281 9762 9766 4282

5258 9709 3922 9721 9719 9783 3924 9795 9793 9710 9715 9720 9714 9784

9789 9794 9788 9762 9763 9767 9766

** ELEMENT PROPERTIES

**

*SOLID SECTION, ELSET=PID1, NATERI_.,=MID4

*SOLID SECTION, ELSET=PID3, MATERIAL=MID4

*SOLID SECTION, ELSET=PID4, I_TERIAL=MID4

*SOLID SECTION, ELSET=PID6, MATERIAL=MID2

*SOLID SECTION, ELSET=PID7, NATERIAL=MID1

*SOLID SECTION, ELSET=PID8, MATERIAL=MID4

** MATERIAL DEFINITIONS

**EI,E2,E3,VI2,VI3,V23,GI2,GI3

**G23

** 0 - .02 INCHES FROM CENTER OF PLATE

*MATERIAL, NAME=MID1

*ELASTIC, TYPE=ENGINEERING CONSTANTS

43.32E+03,42.58E+O3,43E+3,.077,.O89,.091,19.85E+03,19-04E+03

19.04E+03

*EXPANSION, TYPE=ISO , ZERO=O.0000E+00

** .02 - .03 INCHES FROM CENTER OF PLATE

*MATERIAL, NAME=MID2

*ELASTIC, TYPE=ENGINEERING CONSTANTS

43.32E+O3,42.58E+03,47.1E+3,.077,.077,-077,19.85E+03,19.04E+03

19.04E+03

*EXPANSION, TYPE=ISO , ZERO=0.OO00E+O0

** .03 - .04 INCHES FROM CENTER OF PLATE

*MATERIAL, NAME=MID3

*ELASTIC, TYPE=ENGINEERING CONSTANTS

43.32E+03,42.58E+03,57.5E+3,.077,.075,-O77,19-85E+O3,19"04E+03

19.04E+03

*EXPANSION, TYPE=ISO , ZERO=0.0000E+00

**

** .04 - .05 INCHES FROM CENTER OF PLATE
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*MATERIAL, NAME=MID4

*ELASTIC, TYPE=ENGINEERING CONSTANTS

43.32E+O3,42.58E+O3,77.4E+3,.O77,.076,.O77,19.85E+O3,19.04E+03

19.04E+03

*EXPANSION, TYPE=ISO , ZERO=0.0000E+00

** LOAD CASE 100

**

*STEP, NLGEOM, AMP=RAMP, CYCLE=20

**

LOAD CASE 100

*STATIC, PTOL= 1.000 ,MTOL= 10.00

*DLOAD, OP=NEW

301, P6, -7.75000000

316, P6, -7.75000000

331, P6, -7.75000000

2956, P6,

2971, P6,

2986, P6,

-7.75000000

-7.75000000

-7.75000000

*BOUNDARY, OP=NEW

**

1, 3,, 0.0

2, 3,, 0.0

3, 3,, 0.0

9823, 2,, 0.0

9827, 2,, 0.0

9835, 2,, 0.0

*EL FILE, POSITION=AVERAGED AT NODES

S

E

*EL PRINT, POSITION=AVERAGED AT NODES

S

E

*NODE FILE, GLOBAL=YES

U

*NODE PRINT, GLOBAL=YES

U

*FILE FORMAT, ASCII

*END STEP
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APPENDIX XI.

SELECTIVE LISTING OF FORTRAN PROGRAM CHECK

program main

write(*,l)

format (' This is a Least-Squares Program',/)

write(*,2)

format (' written by Photios P. Papados',/)

write(*,3)

format (' ***Each matrix is limited to 200 by 200***',/)

write(*,*) ' '

write(*,*) ' The program has the following general scheme:'

write(*,*) ' '

write(*,*) ' i.e. A x = y '

write(*,4)

format (' It computes the x and y matrices',/)

write *,*) ' xt A x = xt y '

write *,*) ' [ xt x ]^(-i) * [xt A x] = [ xt x ] ^(-I) xt y '

write *,*) ' A = [ xt x ] ^(I) xt y '

write *,*) ' '

write *,*) 'Please Follow all Steps Carefully'

write *,*) ' '

determination of x-matrix

idum=0

xdum=0.0

write(*,*) ' '

write(*,*) ' Determination of the x- and y-matrices'

write(*,*) ' Enter the number of experiments performed'

read(*,*) nl

write(*,*) ' Enter number of available stress components'

read(*,*) nx

write(*,*) ' Enter the number of unknown coefficients'

c

c

8

write(*,*) 'Is this the first or second least-squares fit ?'

write(*,*) 'Enter 1 for first or 2 for second'

read(*,*) ichose

if (ichose.eq.l) goto 7

if (ichose.eq.2) goto 8

endif

continue

write(*,*) ' Enter the three normal interaction coefficients'

write(*,*) ' From which stress combinations, i.e. (sl, s2)'

write(*,*) ' Enter 1 for sl, 2 for s2, 3 for s3'

write(*,*) ' NOTE: You can enter only one stress combination'
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10

y(i)=l-(bl(i)+b2(i)+b3(i)+b4(i)+b5(i))

continue

write(*,*) 'Print the y matrix'

call wtmat(y, nl,l,l,ml)

write(*,*) ' '

C

30

4O

write(*,*) 'Print the x-matrix'

ml=nl

write(*,*) ' '

write (*, 30)

format(' Enter name of output file:

read(*, 40) nfile

format (a)

open (unit=l, file=nfile, status='new')

',$)

write(*,*) 'The program is computing the y-matrix'

write(*,*) 'The program is computing the x-matrix'

220 format(' Do you want the x-matrix saved?

2 Please answer with Y-yes, N-no: '$)

read(*,221)iichose

221 format(a)

if(iichose.eq.'N'.or.iichose.eq.'n') then

goto 260

elseif(iichose.eq.'Y'.or.iichose.eq.'y') then

write(*,230)

230 format(' Enter name of output file: ',$)

read(*,240) nfile

260 continue

write(*,*) 'First Read the x-matrix'

write(*,*) ' '

write(*,*) 'Enter the dimensions of the x-matrix: rows, columns'

read (*,*) nr, nc

nl=nr

n2=nc

isys=0
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c

c

c

ml=nl

m2=n2

call rdmat(x,nl,n2,isys,ml)

compute x transpose

call tran(x,xt,nl,n2,ml)

write(*,*) 'This is the xt-matrix'

call wrmat(xt,n2,nl,l,ml)

call move(xt,t,n2,nl,l,ml)

m2=nl

m3=n2

call mults(xt,x,xtx, n2,nl,n2,ml,m2,m3)

write(*,*) ' '

write(*,*) 'This is the xt*x matrix'

ml=nc

n2=nc

call wrmat(xtx, n2,n2,l,ml)

call wrmat(xtx, n2,n2,l,ml)

call move(xtx, tl,n2,n2,ml,ml)

call INVERT(N2,N2,N2,TI,T,AUGM,VYI)

call move(t,xtxin,n2,n2,ml,ml)

write(*,*) 'This is the inverse xt*x-matrix'

call wrmat(xtxin,n2,n2,l,ml)

write(*,*) ' '

write(*,*) ' This is to check the matrices xtx and xtxin'

call mults(xtxin,xtx, a,n2,n2,n2,n2,n2,n2)

write(*,*) 'This is the I-matrix'

call wrmat(a,n2,n2,l,n2)

write(*,*) 'Now Read the y-matrix'

write(*,*) 'Enter the dimensions of the y-matrix: rows, columns'

read (*,*) nry, ncy

nll=nry

n22=ncy

isys=0

ml=nll

m2=n22

call rdmat(y, nll,n22,isym, ml)

call wrmat(y, nll,n22,l,ml)

ml=n2

m2=nll

m3=n22

WRITE(*,*) ' '

WRITE(*,*) 'N2=',N2, 'NI=', N1

write(*,*) 'This is the xt-matrix'

call wrmat(XT,n2,nl,l,Nl)

call mults(xt,y, xty, n2,nl,n22,Ni,NI,N2)

WRITE(*,*) ' '

write(*,*) 'This is the xt*y-matrix'

call wrmat(xty, n2,n22,l,N2)

m2=n2

call nullr(a,n2,l,N2)

call mults(xtxin,xty, a,n2,n2,n22,n2,N2,N2)

write(*,*) 'This is the A-matrix of Least-Squares Coefficients'
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i000

i010

I011

1012

call wrmat(a,n2,n22, l,ml)

write(*,*) 'The A-matrix of coefficients is stored'

write(*,*) 'in the file "acoeff.dat"'

call wtmat(a,n2,n22,l,N2)

continue

write(*,*) ' '

write(*,1010)

format('Would you like to continue with new data analysis?

2 Please answer with Y-yes, N-no: '$)

read(*,1011)iichose

format(a)

if(iichose.eq.'N'.or.iichose.eq.'n') then

goto 1012

elseif(iichose.eq.'Y'.or.iichose.eq.'y') then

goto 1020

endif

continue

end

Subroutine Package

end
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A, B, C, D

a, b

o,/,hi, q,
di, e/, f

ai,bi, ci,hi

A i .,Bij, Cij

{a)
C

c

C1-C 9

C 1 , C 2

d,_,KI,K 2

E a

E l , E 2 , E 3

F, G, H,

L,M, N

Fcx, Fcy, Fcz

Fsyz, Fszx, Fsxy

Ftx, Fry, Ftz

Fij, Fijkl,

Fi j klmn

Fi9(i_j)
Fti , Fci

fy

f(ai,b i, ci,h i)

g

G 1 , G 2

GI2, G 6

GI3, G 5

G23, G 4

I

I, I ', II, III

II, III

Jl ' J2, J3

Jl',J2',J3'

KI,LI,MI,

K2, L2, M2,

K3 , L3 , M3 ,

KI' ,LI',MI',

APPENDIX XII.

NOTATION

constants which are functions of Fi, Fij, and Fij k

(Jiang and Tennyson)

sides of section undergoing torsion

material coefficients for Priddy's criterion

unknown coefficients for least-squares

constants which are functions of Fi, Fij , and Fij k

matrix similar to the elastic compliance used in

Priddy's criterion

least squares unknown coefficients in vector form

torsional rigidity

aspect ratio a/_.

material constants for Hoffman's criterion

longitudinal and shear wave velocities,

respectively

parameters used with torsional problem

average through-thickness modulus for thickness t

elastic moduli for long, transverse, and through-

thickness material directions, respectively

material constants for Hill's criterion

orthonormal, uniaxial, compressive strengths

pure shear strengths

orthonormal, uniaxial, tensile strengths for

Hoffman's criterion

contracted equivalents of the second, fourth, and

sixth-order strength tensors

second, fourth, and sixth-order strength tensors

shear strength parameters for Priddy's criterion

tensile and compressive strengths, respectively

yield surface function

fit function for least-squares

failure surface function

G2/G 1

shear moduli associated with sides a and b

in-plane shear moduli

shear moduli for (1-3) plane

shear moduli for (2-3) plane

intensity

stress invariants of Priddy's criterion

second and third stress invariants

invariants of the stress tensor (_ij

invariants of the deviatoric stress tensor crlj'
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K.2' , L2' , M2' ,
K3' , 1,3', 343', T

Mt

R,S,T

R, S, T,

R',S',T'

JR]

S yx

Slx, S2x,S3x

W

X, Y, Z

X, Y, Z,

X',Y',Z'

Xc' Yc' Zc

Xij

[xl

yi

Ym(Y)

(y}

(_ki,0_lj

8ij

El, E2, E3

612,66

E13,65

623,64

[EL]

[EM]

-BIp

V12, V21, VI3

V31, V23, V32

P

(_ij

constants which are functions of Fij and Fij k
torsional moment

principal shear yield stresses (Hill, Hoffman)

principal positive and negative shear failure

stresses

rotational matrix

measured stiffness in y-direction due to stress

in the x-direction

stiffnesses in the long, transverse, and through-

thickness

direction due to an applied stress in the x-

direction

equivalent form of strain energy density

principal tensile yield stresses (Hill, Hoffman)

principal tensile and compressive failure

stresses

center(s) of ellipsoidal surface from Hoffman's

criterion

value of the i th variable associated with the jth

observation

matrix containing the powered terms of f(a i, b i,

c i , h i )

computed value of the best-fit function for the

ith observation

amplitude of stress function,

vector form of estimated values of f(ai_ I, b i, c i,

hi)

angle of rolling with respect to first principal

material axis

direction cosines for transformation of stress

tensor

Kronecker delta

strain in the long, transverse, and through-

thickness

material directions, respectively

in-plane shear strain

shear strain on the (1-3) plane

shear strain on the (2-3) plane

strain matrix with respect to load axes

strain matrix with respect to material axes

Lagrange multipliers

[g

average through-thickness Poisson's ratio for

thickness t

mass absorption coefficient

Poisson's ratios

density

second-order stress tensor
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_ij '

_i °

C;x

a×,ay,az,

axy ,Cryz,a×z

cr××,azy,Crzz,

axy,axz,ayz

a× ',az ',az ',

rxz',rxz',ryz'

a1,G2,a3

a1,a2,cr3

a1,cr2 ,_r3,

a4,crs,a6

_i ',_2',a3'

[a]

[_r,]

[aM]

•,w,n,/7
x

X

deviatoric stress tensor

octahedral shear stress at yield

stress parallel to the direction of the load

stress components for Hill's and Hoffman's

criteria

components of [_]

components of the deviatoric stress

principal stresses of second-order stress tensor

used to define J1, J2, and J3

= stress in the long, transverse, and through-

thickness

material directions, respectively

components of [_i] and {_i}

principal stresses of deviatoric stress tensor

second-order stress tensor in matrix form

contracted equivalent of [_] in matrix form

load orientation stress matrix

material orientation stress matrix

vector form of stress tensor

contracted equivalent of [s] in vector form

functionals from new criterion

thickness of the material

stress function for torsion




